945 resultados para fractured grains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete element method (DEM) is a numerical technique widely used for simulating the mechanical behavior of granular materials involved in many food and agricultural industry processes. Additionally, this technique is also a powerful tool to understand many complex phenomena related to the mechanics of granular materials. However, to make use of the potential of this technique it is necessary to develop DEM models capable of representing accurately the reality. For that, among some other questions, it is essential that the values of the microscopic material properties used to define the numerical model are accurately determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we show that potassium-doped tungsten foil should be preferred to pure tungsten foil when considering tungsten laminate pipes for structural divertor applications. Potassium-doped tungsten materials are well known from the bulb industry and show an enhanced creep and recrystallization behaviour that can be explained by the formation of potassium-filled bubbles that are surrounding the elongated grains, leading to an interlocking of the microstructure. In this way, the ultra-fine grained (UFG) microstructure of tungsten foil can be stabilized and with it the extraordinary mechanical properties of the foil in terms of ductility, toughness, brittle-to-ductile transition, and radiation resistance. In this paper we show the results of three-point bending tests performed at room temperature on annealed pure tungsten and potassium-doped tungsten foils (800, 900, 1000, 1100, 1200, 1300, 1400, 1600, 1800, 2000, 2200, and 2400 °C for 1 h in vacuum). The microstructural assessment covers the measurement of the hardness and analyses of fractured surfaces as well as a comparison of the microstructure by optical microscopy. The results show that there is a positive effect of potassium-doped tungsten foils compared to pure tungsten foil and demonstrate the potential of the doped foil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBaCuO and GdBaCuO + 15 wt% Ag large, single-grain, bulk superconductors have been fabricated via the top-seeded, melt-growth (TSMG) process using a generic NdBCO seed. The mechanical behavior of both materials has been investigated by means of three-point bending (TPB) and transversal tensile tests at 77 and 300 K. The strength, fracture toughness and hardness of the samples were studied for two directions of applied load to obtain comprehensive information about the effect of microstructural anisotropy on the macroscopic and microscopic mechanical properties of these technologically important materials. Splitting (Brazilian) tests were carried out on as-melt-processed cylindrical samples following a standard oxygenation process and with the load applied parallel to the growth-facet lines characteristic of the TSMG process. In addition, the elastic modulus of each material was measured by three different techniques and related to the microstructure of each sample using optical microscopy. The results show that both the mechanical properties and the elastic modulus of both YBCO and GdBCP/Ag are improved at 77 K. However, the GdBCO/Ag samples are less anisotropic and exhibit better mechanical behavior due to the presence of silver particles in the bulk, superconducting matrix. The splitting tensile strength was determined at 77 K and both materials were found to exhibit similar behavior, independently of their differences in microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain of the self-pollinating diploid barley species offers two modes of producing recombinant enzymes or other proteins. One uses the promoters of genes with aleurone-specific expression during germination and the signal peptide code for export of the protein into the endosperm. The other uses promoters of the structural genes for storage proteins deposited in the developing endosperm. Production of a protein-engineered thermotolerant (1, 3–1, 4)-β-glucanase with the D hordein gene (Hor3–1) promoter during endosperm development was analyzed in transgenic plants with four different constructs. High expression of the enzyme and its activity in the endosperm of the mature grain required codon optimization to a C+G content of 63% and synthesis as a precursor with a signal peptide for transport through the endoplasmic reticulum and targeting into the storage vacuoles. Synthesis of the recombinant enzyme in the aleurone of germinating transgenic grain with an α-amylase promoter and the code for the export signal peptide yielded ≈1 μg⋅mg−1 soluble protein, whereas 54 μg⋅mg−1 soluble protein was produced on average in the maturing grain of 10 transgenic lines with the vector containing the gene for the (1, 3–1, 4)-β-glucanase under the control of the Hor3–1 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cereal aleurone responses to gibberellic acid (GA3) include activation of synthesis of hydrolytic enzymes and acidification of the external medium. We have studied the effect of the pH of the incubation medium on the response of wheat (Triticum aestivum) aleurone cells to GA3. De-embryonated half grains show the capacity for GA3-activated medium acidification when incubation is carried out at pH 6.0 to 7.0 but not at lower pHs. In addition, the activating effect of GA3 on the expression of carboxypeptidase III and thiol protease genes is more efficient when the hormone treatment is carried out at neutral pH. In situ pH staining showed that starchy endosperm acidification takes place upon imbibition and advances from the embryo to the distal part of the grain. In situ hybridization experiments showed a similar pattern of expression of a carboxypeptidase III gene, which is up-regulated by GA3 in aleurone cells. However, aleurone gene expression precedes starchy endosperm acidification. These findings imply that in vivo GA perception by the aleurone layer takes place at neutral pH and suggest that the acidification of the starchy endosperm is regulated by GA3 in germinated wheat grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.