962 resultados para fractional differential equations
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
2000 Mathematics Subject Classification: 34K15, 34C10.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
MSC 2010: 26A33, 34A08, 34K37
Resumo:
The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws.
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.
Resumo:
In this paper we consider the second order discontinuous equation in the real line, (a(t)φ(u′(t)))′ = f(t,u(t),u′(t)), a.e.t∈R, u(-∞) = ν⁻, u(+∞)=ν⁺, with φ an increasing homeomorphism such that φ(0)=0 and φ(R)=R, a∈C(R,R\{0})∩C¹(R,R) with a(t)>0, or a(t)<0, for t∈R, f:R³→R a L¹-Carathéodory function and ν⁻,ν⁺∈R such that ν⁻<ν⁺. We point out that the existence of heteroclinic solutions is obtained without asymptotic or growth assumptions on the nonlinearities φ and f. Moreover, as far as we know, this result is even new when φ(y)=y, that is, for equation (a(t)u′(t))′=f(t,u(t),u′(t)), a.e.t∈R.
Resumo:
Researchers have engrossed fractional-order modeling because of its ability to capture phenomena that are nearly impossible to describe owing to its long-term memory and inherited properties. Motivated by the research in fractional modeling, a fractional-order prototype for a flexible satellite whose dynamics are governed by fractional differential equations is proposed for the first time. These relations are derived using fractional attitude dynamic description of rigid body simultaneously coupled with the fractional Lagrange equation that governs the vibration of the appendages. Two attitude controls are designed in the presence of the faults and uncertainties of the system. The first is the fractional-order feedback linearization controller, in which the stability of the internal dynamics of the system is proved. The second is the fractional-order sliding mode control, whose asymptotic stability is demonstrated using the quadratic Lyapunov function. Several nonlinear simulations are implemented to analyze the performance of the proposed controllers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
Resumo:
In this note we prove an existence and uniqueness result for the solution of multidimensional stochastic delay differential equations with normal reflection. The equations are driven by a fractional Brownian motion with Hurst parameter H > 1/2. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann¿Stieltjes integral.
Resumo:
In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05