259 resultados para fluticasone propionate
Resumo:
Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-d-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.
Resumo:
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride.
Resumo:
When the human prostate cancer cell line, LNCaP 104-S, the growth of which is stimulated by physiological levels of androgen, is cultured in androgen-depleted medium for > 100 passages, the cells, now called LNCaP 104-R2, are proliferatively repressed by low concentrations of androgens. LNCaP 104-R2 cells formed tumors in castrated male athymic nude mice. Testosterone propionate (TP) treatment prevented LNCaP 104-R2 tumor growth and caused regression of established tumors in these mice. Such a tumor-suppressive effect was not observed with tumors derived from LNCaP 104-S cells or androgen receptor-negative human prostate cancer PC-3 cells. 5 alpha-Dihydrotestosterone, but not 5 beta-dihydrotestosterone, 17 beta-estradiol, or medroxyprogesterone acetate, also inhibited LNCaP 104-R2 tumor growth. Removal of TP or implantation of finasteride, a 5 alpha-reductase inhibitor, in nude mice bearing TP implants resulted in the regrowth of LNCaP 104-R2 tumors. Within 1 week after TP implantation, LNCaP 104-R2 tumors exhibited massive necrosis with severe hemorrhage. Three weeks later, these tumors showed fibrosis with infiltration of chronic inflammatory cells and scattered carcinoma cells exhibiting degeneration. TP treatment of mice with LNCaP 104-R2 tumors reduced tumor androgen receptor and c-myc mRNA levels but increased prostate-specific antigen in serum- and prostate-specific antigen mRNA in tumors. Although androgen ablation has been the standard treatment for metastatic prostate cancer for > 50 years, our study shows that androgen supplementation therapy may be beneficial for treatment of certain types of human prostate cancer and that the use of 5 alpha-reductase inhibitors, such as finasteride or anti-androgens, in the general treatment of metastatic prostate cancer may require careful assessment.
Resumo:
A single gene (mas) encodes the multifunctional enzyme that catalyzes the synthesis of very long chain multiple methyl branched fatty acids called mycocerosic acids that are present only in slow-growing pathogenic mycobacteria and are thought to be important for pathogenesis. To achieve a targeted disruption of mas, an internal 2-kb segment of this gene was replaced with approximately the same size hygromycin-resistance gene (hyg), such that hyg was flanked by 4.7- and 1.4-kb segments of mas. Transformation of Mycobacterium bovis BCG with this construct in a plasmid that cannot replicate in mycobacteria yielded hygromycin-resistant transformants. Screening of 38 such transformants by PCR revealed several transformants representing homologous recombination with single crossover and one with double crossover. With primers representing the hyg termini and those representing the mycobacterial genome segments outside that used to make the transformation construct, the double-crossover mutant yielded PCR products expected from either side of hyg. Gene replacement was further confirmed by the absence of the vector and the 2-kb segment of mas replaced by hyg from the genome of the mutant. Thin-layer and radio-gas chromatographic analyses of the lipids derived from [1-14C]propionate showed that the mutant was incapable of synthesizing mycocerosic acids and mycosides. Thus, homologous recombination with double crossover was achieved in a slow-growing mycobacterium with an intron-containing RecA. The resulting mas-disrupted mutant should allow testing of the postulated roles of mycosides in pathogenesis.
Resumo:
Ionotropic glutamate receptors, neurotransmitter-activated ion channels that mediate excitatory synaptic transmission in the central nervous system, are oligomeric membrane proteins of unknown subunit stoichiometry. To determine the subunit stoichiometry we have used a functional assay based on the blockade of two alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor subunit 1 (GluR1) mutant subunits selectively engineered to exhibit differential sensitivity to the open channel blockers phencyclidine and dizolcipine (MK-801). Coinjection into amphibian oocytes of weakly sensitive with highly sensitive subunit complementary RNAs produces functional heteromeric channels with mixed blocker sensitivities. Increasing the fraction of the highly sensitive subunit augmented the proportion of drug-sensitive receptors. Analysis of the data using a model based on random aggregation of receptor subunits allowed us to determine a pentameric stoichiometry for GluR1. This finding supports the view that a pentameric subunit organization underlies the structure of the neuronal ionotropic glutamate receptor gene family.
Resumo:
Progesterone receptors appear in granuloma cells of preovulatory follicles after the midcycle gonadotropin surge, suggesting important local actions of progesterone during ovulation in primates. Steroid reduction and replacement during the gonadotropin surge in macaques was used to evaluate the role of progesterone in the ovulatory process. Animals received gonadotropins to induce development of multiple preovulatory follicles, followed by human chorionic gonadotropin (hCG) administration (day 0) to promote oocyte (nuclear) maturation, ovulation, and follicular luteinization. On days 0-2, animals received no further treatment; a steroid synthesis inhibitor, trilostane (TRL); TRL + R5020; or TRL + dihydrotestosterone propionate (DHT). On day 3, ovulation was confirmed by counting ovulation sites and collecting oviductal oocytes. The meiotic status of oviductal and remaining follicular oocytes was evaluated. Peak serum estradiol levels, the total number of large follicles, and baseline serum progesterone levels at the time of hCG administration were similar in all animals. Ovulation sites and oviductal oocytes were routinely observed in controls. Ovulation was abolished in TRL. Progestin, but not androgen, replacement restored ovulation. Relative to controls, progesterone production was impaired for the first 6 days post-hCG in TRL, TRL + R5020, and TRL + DHT. Thereafter, progesterone remained low in TRL but recovered to control levels with progestin and androgen replacement. Similar percentages of mature (metaphase II) oocytes were collected among groups. Thus, steroid reduction during the gonadotropin surge inhibited ovulation and luteinization, but not reinitiation of oocyte meiotic maturation, in the primate follicle. The data are consistent with a local receptor-mediated role for progesterone in the ovulatory process.
Resumo:
The N-methyl-D-aspartate receptor (NMDAR), a pivotal entity for synaptic plasticity and excitotoxicity in the brain, is a target of psychotomimetic drugs such as phencyclidine (PCP) and dizolcipine (MK-801). In contrast, a related glutamate receptor, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor GluR1, is weakly sensitive to these drugs. Three point mutations on GluR1, mimicking homologous residues on the NMDAR, confer the PCP and MK-801 blockade properties that are characteristic of the NMDAR--namely, high potency, voltage dependence, and use dependence. The molecular determinants that specify the PCP block appear confined to the putative M2 transmembrane segment, whereas the sensitivity to MK-801 requires an interplay between residues from M2 and M3. Given the plausible involvement of the NMDAR in the etiology of several neurodegenerative diseases and in excitotoxic neuronal cell death, tailored glutamate receptors with specific properties may be models for designing and screening new drugs targeted to prevent glutamate-mediated neural damage.
Resumo:
It has been suggested that transepithelial gradients of short-chain fatty acids (SCFAs; the major anions in the colonic lumen) generate pH gradients across the colonic epithelium. Quantitative confocal microscopy was used to study extracellular pH in mouse distal colon with intact epithelial architecture, by superfusing tissue with carboxy SNARF-1 (a pH-sensitive fluorescent dye). Results demonstrate extracellular pH regulation in two separate microdomains surrounding colonic crypts: the crypt lumen and the subepithelial tissue adjacent to crypt colonocytes. Apical superfusion with (i) a poorly metabolized SCFA (isobutyrate), (ii) an avidly metabolized SCFA (n-butyrate), or (iii) a physiologic mixture of acetate/propionate/n-butyrate produced similar results: alkalinization of the crypt lumen and acidification of subepithelial tissue. Effects were (i) dependent on the presence and orientation of a transepithelial SCFA gradient, (ii) not observed with gluconate substitution, and (iii) required activation of sustained vectorial acid/base transport by SCFAs. Results suggest that the crypt lumen functions as a pH microdomain due to slow mixing with bulk superfusates and that crypts contribute significant buffering capacity to the lumen. In conclusion, physiologic SCFA gradients cause polarized extracellular pH regulation because epithelial architecture and vectorial transport synergize to establish regulated microenvironments.
Resumo:
Stratum corneum (SC) desorption experiments have yielded higher calculated steady-state fluxes than those obtained by epidermal penetration studies. A possible explanation of this result is a variable diffusion or partition coefficient across the SC. We therefore developed the diffusion model for percutaneous penetration and desorption to study the effects of either a variable diffusion coefficient or variable partition coefficient in the SC over the diffusion path length. Steady-state flux, lag time, and mean desorption time were obtained from Laplace domain solutions. Numerical inversion of the Laplace domain solutions was used for simulations of solute concentration-distance and amount penetrated (desorbed)-time profiles. Diffusion and partition coefficients heterogeneity were examined using six different models. The effect of heterogeneity on predicted flux from desorption studies was compared with that obtained in permeation studies. Partition coefficient heterogeneity had a more profound effect on predicted fluxes than diffusion coefficient heterogeneity. Concentration-distance profiles show even larger dependence on heterogeneity, which is consistent with experimental tape-stripping data reported for clobetasol propionate and other solutes. The clobetasol propionate tape-stripping data were most consistent with the partition coefficient decreasing exponentially for half the SC and then becoming a constant for the remaining SC. (C) 2004 Wiley-Liss, Inc.
Resumo:
The effectiveness of enhanced biological phosphorus removal (ESPR) systems is directly affected by the competition of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigated the short-term effects of carbon source on PAO and GAO performance. The tests were designed to clearly determine the impact of volatile fatty acid (VFA) composition on the performance of two types of biomass, one enriched for PAOs and the other for GAOs. The two populations were enriched in separate reactors using identical operating conditions and very similar influent compositions with acetate as the sole carbon source. The only difference was that a very tow level of phosphorus was present in the influent to the GAO reactor. The abundance of PAOs and GAOs was quantified using fluorescence in-situ hybridisation. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to utilise different carbon substrates. While both are able to take up acetate rapidly and completely, the GAOs are far slower at consuming propionate than the PAOs during short-term substrate changes. This provides a potentially highly valuable avenue to influence the competition between PAOs and GAOs. Other VFAs studied seem to be less usable in the short term by both PAOs and GAOs; as indicated by their much lower uptake rates.
Resumo:
There is an urgent need to treat restenosis, a major complication of the treatment of arteries blocked by atherosclerotic plaque, using local delivery techniques. We observed that cross-linked fibrin (XLF) is deposited at the site of surgical injury of arteries. An antibody to XLF, conjugated to anti-restenotic agents, should deliver the drugs directly and only to the site of injury. An anti-XLF antibody (H93.7C.1D2/48; 1D2) was conjugated to heparin (using N-succinimidyl 3-(2-pyridyldithio)-propionate), low molecular weight heparin (LMWH) (adipic acid dihydrazide) and rapamycin (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide), and the conjugates purified and tested for activity before use in vivo. Rabbits had their right carotid arteries de-endothelialised and then given a bolus of 1D2-heparin, 1D2-LMWH or 1D2-rapamycin conjugate or controls of saline, heparin, LMWH, rapamycin or 1D2 (+/-heparin bolus) and sacrificed after 2 or 4 weeks (12 groups, n=6/group). Rabbits given any of the conjugates had minimal neointimal development in injured arteries, with up to 59% fewer neointimal cells than those given control drugs. Rabbits given 1D2-heparin or 1D2-LMWH had an increased or insignificant reduction in luminal area, with positive remodelling, while the medial and total arterial areas of rabbits given 1D2-rapamycin were not affected by injury. Arteries exposed to 1D2-heparin or 1D2-rapamycin had more endothelial cells than rabbits given control drugs. Thus, XLF-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall, where the conjugates can influence remodelling, re-endothelialisation and neointimal cell density, with reduced neointimal formation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Effects of monensin (Mon) on performance of Holstein-Friesian cows fed tropical grasses and cane molasses (M) or cereal grain were examined in three experiments. In experiment I (incomplete 4 x 4 Latin square), three rumen-fistulated cows [188 I I days in milk (DIM)] were fed mixed diets based on rhodes grass (Chloris gayana cv. Callide) bay where M was substituted for wheat grain (W) at rates of 0 (MO), 125 (M 125) or 250 (M250) g/kg dry matter (DM). A fourth diet contained M250 plus 0.02 g Mon/kg DM (M250 + Mon). Substituting M for W tended (P < 0.10) to decrease the ratio of rumen molar proportions of acetate+butyrate (Bu):propionate (Pr) (4.3 versus 3.8 and 4.0 for M0, M125 and M250, respectively). There were no treatment effects (P> 0.10) on intake, organic matter digestibility, milk production or liveweight (LW) change. In experiment 2, 48 cows (173 &PLUSMN; 28.3 DIM) grazing kikuyu (Pennisetum clandestinum cv. common) pastures and supplemented with maize silage and a grain-based concentrate were offered either M (2.6 kg DM/(cow day)) or barley grain (B) (2.7 kg DM/(cow day)). Within each supplement type, half were fed 0 or 320 mg of Mon/(cow day). There were Mon x supplement interactions (Mon x S; P < 0.05) on the rumen molar proportion of Pr and Bu at 15:00 h, with B + Mon having the highest value for Pr (0.259 mmol/mmol) and lowest value for Bu (0.121 mmol/mmol). A Mon x S effect (P < 0.05) on milk fat content was noted with Mon causing a lower value regardless of energy source (31 and 36 g/l versus 40 and 38 g/l for B + Mon, M + Mon, B - Mon and M - Mon, respectively). As a main effect, M as opposed to B, reduced yields of milk (P < 0.05; 16.21/(cow day) versus 18.01/(cow day)) and protein (P < 0.05; 479 g/(cow day) versus 538 g/(cow day)). Monensin reduced milk fat yield (P < 0.05; 669 g/(cow day) versus 562 g/(cow day)), raised milk protein concentration (P < 0.05; 31 g/l versus 29 g/l) and caused LW gain rather than loss (P < 0.05; +0.06 kg/(cow day) versus -0.30 kg/(cow day)). No treatment effects on pasture intake were noted. In experiment 3, 48 cows (91 &PLUSMN; 16.1 DIM) grazing kikuyu pasture and supplemented with grain-based concentrate, sugar cane silage and 2.7 kg DM(cow day) of M were supplemented with either 0 or 320 mg Mon/(cow day). Monensin reduced (P < 0.05) milk fat content (33 g/l versus 30 g/l) and tended (P < 0.10) to reduce milk protein content (29 g/l versus 28 g/l). No effects of Mon on other milk production parameters, LW change or pasture intake were noted. Feeding monensin to mid-lactation Holstein-Friesian cows offered diets based on tropical grasses, and cane molasses or grain, improves rumen fermentation efficiency, thereby improving energy efficiency resulting in higher LW gain. Monensin had no effect on milk yield, but reduced milk fat concentration.
Resumo:
In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH (similar to 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of Candidatus Accumulibacter phosphatis) increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily Candidatus Competibacter phosphatis) decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.