817 resultados para flexible learning space
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We introduce a novel way of measuring the entropy of a set of values undergoing changes. Such a measure becomes useful when analyzing the temporal development of an algorithm designed to numerically update a collection of values such as artificial neural network weights undergoing adjustments during learning. We measure the entropy as a function of the phase-space of the values, i.e. their magnitude and velocity of change, using a method based on the abstract measure of entropy introduced by the philosopher Rudolf Carnap. By constructing a time-dynamic two-dimensional Voronoi diagram using Voronoi cell generators with coordinates of value- and value-velocity (change of magnitude), the entropy becomes a function of the cell areas. We term this measure teleonomic entropy since it can be used to describe changes in any end-directed (teleonomic) system. The usefulness of the method is illustrated when comparing the different approaches of two search algorithms, a learning artificial neural network and a population of discovering agents. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Workflow systems have traditionally focused on the so-called production processes which are characterized by pre-definition, high volume, and repetitiveness. Recently, the deployment of workflow systems in non-traditional domains such as collaborative applications, e-learning and cross-organizational process integration, have put forth new requirements for flexible and dynamic specification. However, this flexibility cannot be offered at the expense of control, a critical requirement of business processes. In this paper, we will present a foundation set of constraints for flexible workflow specification. These constraints are intended to provide an appropriate balance between flexibility and control. The constraint specification framework is based on the concept of pockets of flexibility which allows ad hoc changes and/or building of workflows for highly flexible processes. Basically, our approach is to provide the ability to execute on the basis of a partially specified model, where the full specification of the model is made at runtime, and may be unique to each instance. The verification of dynamically built models is essential. Where as ensuring that the model conforms to specified constraints does not pose great difficulty, ensuring that the constraint set itself does not carry conflicts and redundancy is an interesting and challenging problem. In this paper, we will provide a discussion on both the static and dynamic verification aspects. We will also briefly present Chameleon, a prototype workflow engine that implements these concepts. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Confronted with various issues in teaching business writing to Chinese students in New Zealand, this paper sees the need for bridging the gap between genre-based research and teaching in an intercultural context. Specifically, it develops an intercultural reflective model in the light of Bhatia's sociocognitive genre study as well as cross-cultural persuasion. As an important part of the model, New Zealand and Chinese experts' intracultural and intercultural reflections on business writing are solicited and compared and the theoretical implications for teaching and learning business writing are discussed. It has been found, through a case study of analysing English and Chinese business faxes, this model can offer an in-depth understanding about discursive competence across cultures, and provide a link between genre-based theory, teaching practice and professional expertise.
Resumo:
The current trend among many universities is to increase the number of courses available online. However, there are fundamental problems in transferring traditional education courses to virtual formats. Delivering current curricula in an online format does not assist in overcoming the negative effects on student motivation which are inherent in providing information passively. Using problem-based learning (PBL) online is a method by which computers can become a tool to encourage active learning among students. The delivery of curricula via goal-based scenarios allows students to learn at different rates and can successfully shift online learning from memorization to discovery. This paper reports on a Web-based e-health course that has been delivered via PBL for the past 12 months. Thirty distance-learning students undertook postgraduate courses in e-health delivered via the Internet (asynchronous communication). Data collected via online student surveys indicated that the PBL format was both flexible and interesting. PBL has the potential to increase the quality of the educational experience of students in online environments.
Resumo:
In many online applications, we need to maintain quantile statistics for a sliding window on a data stream. The sliding windows in natural form are defined as the most recent N data items. In this paper, we study the problem of estimating quantiles over other types of sliding windows. We present a uniform framework to process quantile queries for time constrained and filter based sliding windows. Our algorithm makes one pass on the data stream and maintains an E-approximate summary. It uses O((1)/(epsilon2) log(2) epsilonN) space where N is the number of data items in the window. We extend this framework to further process generalized constrained sliding window queries and proved that our technique is applicable for flexible window settings. Our performance study indicates that the space required in practice is much less than the given theoretical bound and the algorithm supports high speed data streams.
Resumo:
Proof reuse, or analogical reasoning, involves reusing the proof of a source theorem in the proof of a target conjecture. We have developed a method for proof reuse that is based on the generalisation replay paradigm described in the literature, in which a generalisation of the source proof is replayed to construct the target proof. In this paper, we describe the novel aspects of our method, which include a technique for producing more accurate source proof generalisations (using knowledge of the target goal), as well as a flexible replay strategy that allows the user to set various parameters to control the size and the shape of the search space. Finally, we report on the results of applying this method to a case study from the realm of software verification.
Resumo:
We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.
Resumo:
Lifelong learning is a ‘keystone’ of educational policies (Faure, 1972) where the emphasis on learning shifts from teacher to learner. Higher Education (HE) institutions should be committed to developing lifelong learning, that is promoting learning that is flexible, diverse and relevant at different times, and in different places, and is pursued throughout life. Therefore the HE sector needs to develop effective strategies to encourage engagement in meaningful learning for diverse student populations. The use of e-portfolios, as a ‘purposeful aggregation of digital items’ (Sutherland & Powell, 2007), can meet the needs of the student community by encouraging reflection, the recording of experiences and achievements, and personal development planning (PDP). The use of e-portfolios also promotes inclusivity in learning as it provides students with the opportunity to articulate their aspirations and take the first steps along the pathway of lifelong learning. However, ensuring the uptake of opportunities within their learning is more complex than the students simply having access to the software. Therefore it is argued here that crucial to the effective uptake and engagement of the e-portfolio is embedding it purposefully within the curriculum. In order to investigate effective implementation of e-portfolios an explanatory case study on their use was carried out, initially focusing on 3 groups of students engaged in work-based learning and professional practice. The 3 groups had e-Portfolios embedded and assessed at different levels. Group 1 did not have the e-Portfolio embedded into their curriculum nor was the e-Portfolio assessed. Group 2 had the e-Portfolio embedded into the curriculum and formatively assessed. Group 3 also had the e-Portfolio embedded into the curriculum and were summatively assessed. Results suggest that the use of e-Portfolios needs to be integral to curriculum design in modules rather than used as an additional tool. In addition to this more user engagement was found in group 2 where the e-Portfolio was formatively assessed only. The implications of this case study are further discussed in terms of curriculum development.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
Recent surveys reveal that many university students in the U.K. are not satisfied with the timeliness and usefulness of the feedback given by their tutors. Ensuring timeliness in marking can result in a reduction in the quality of feedback. Though suitable use of Information and Communication Technology should alleviate this problem, existing Virtual Learning Environments are inadequate to support detailed marking scheme creation and they provide little support for giving detailed feedback. This paper describes a unique new web-based tool called e-CAF for facilitating coursework assessment and feedback management directed by marking schemes. Using e-CAF, tutors can create or reuse detailed marking schemes efficiently without sacrificing the accuracy or thoroughness in marking. The flexibility in marking scheme design also makes it possible for tutors to modify a marking scheme during the marking process without having to reassess the students’ submissions. The resulting marking process will become more transparent to students.
Resumo:
Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential framework for inference in such projected processes is presented, where the observations are considered one at a time. We introduce a C++ library for carrying out such projected, sequential estimation which adds several novel features. In particular we have incorporated the ability to use a generic observation operator, or sensor model, to permit data fusion. We can also cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the variogram parameters is based on maximum likelihood estimation. We illustrate the projected sequential method in application to synthetic and real data sets. We discuss the software implementation and suggest possible future extensions.
Resumo:
The objective of this research is to design and build a groupware system which will allow members of a distributed group more flexibility in performing software inspection. Software inspection, which is part of non-execution based testing in software development, is a group activity. The groupware system aims to provide a system that will improve acceptability of groupware and improve software quality by providing a software inspection tool that is flexible and adaptable. The groupware system provide a flexible structure for software inspection meetings. The groupware system will extend the structure of the software inspection meeting itself, allowing software inspection meetings to use all four quadrant of the space-time matrix: face-to-face, distributed synchronous, distributed asynchronous, and same place-different time. This will open up new working possibilities. The flexibility and adaptability of the system allows work to switch rapidly between synchronous and asynchronous interaction. A model for a flexible groupware system was developed. The model was developed based on review of the literature and questionnaires. A prototype based on the model was built using java and WWW technology. To test the effectiveness of the system, an evaluation was conducted. Questionnaires was used to gather response from the users. The evaluations ascertained that the model developed is flexible and adaptable to the different working modes, and the system is capable of supporting several different models of the software inspection process.