879 resultados para finite-time stability
Resumo:
A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to determine if the effects of inoculation with Lactobacillus buchneri 40788 were detectable when applied to whole-plant corn stored in farm silos. Corn silage was randomly sampled from farms in Wisconsin, Minnesota, and Pennsylvania, and was untreated (n = 15) or treated with an inoculant (n = 16) containing L. buchneri 40788 alone or this organism combined with Pediococcus pentosaceus during May and June 2007. Corn silage that was removed from the silo face during the morning feeding was sampled, vacuum-packed, and heat sealed in polyethylene bags and shipped immediately to the University of Delaware for analyses. Silage samples were analyzed for dry matter (DM), nutrient composition, fermentation end-products, aerobic stability, and microbial populations. The population of L. buchneri in silages was determined using a real-time quantitative PCR method. Aerobic stability was measured as the time after exposure to air that it took for a 2 degrees C increase above an ambient temperature. The DM and concentrations of lactic and acetic acids were 35.6 and 34.5, 4.17 and 4.85, and 2.24 and 2.41%, respectively, for untreated and inoculated silages and were not different between treatments. The concentration of 1,2-propanediol was greater in inoculated silages (1.26 vs. 0.29%). Numbers of lactic acid bacteria determined on selective agar were not different between treatments. However, the numbers of L. buchneri based on measurements using real-time quantitative PCR analysis were greater and averaged 6.46 log cfu-equivalents/g compared with 4.89 log cfu-equivalent for inoculated silages. There were fewer yeasts and aerobic stability was greater in inoculated silages (4.75 log cfu/g and 74 h of stability) than in untreated silages (5.55 log cfu/g and 46 h of stability). This study supports the effectiveness of L. buchneri 40788 on dairy farms.
Resumo:
Protein structure and function can be regulated by no specific interactions, such as ionic interactions in the presence of salts. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. The aim of this study was to evaluate the thermal stability of GFP in the presence of different salts at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were higher in the presence of citrate and phosphate, when compared with that obtained in their absence, indicating that these salts stabilized the protein against thermal denaturation. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 269-272, 2011
Resumo:
Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 252-256, 2010
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.
Resumo:
Background: The effectiveness of a water/oil (w/o) microemulsion containing quercetin against ultraviolet B radiation (UVB) induced damage was recently demonstrated by our group. However, during the development of new pharmaceutical products, the evaluation of percutaneous absorption and in vivo effectiveness should be accompanied by evaluation of stability parameters as an integral part of the process. Objective: The aim was to investigate the stability of the final microemulsion formulation considering the temperature ranges of storage and application. Methods: The physical, chemical, and functional stability of this formulation under different conditions of storage during 12 months and the photostability of quercetin incorporated into this system over UVB exposure for 7 days were evaluated. Results: Although the results indicated a notable physical stability of the w/o microemulsions during the experimental period under all employed conditions, in both, the chemical and functional studies, a significant loss of quercetin content and antioxidant activity was found after 6 months of storage at 30 degrees C/70% relative humidity and after 2 months at 40 degrees C/70% relative humidity. The photostability study results demonstrated that the incorporation of quercetin into the w/o microemulsion maintained the previously demonstrated photostability of this flavonoid under forced exposure to UVB irradiation. Conclusion: Thus, this work demonstrates that special storage conditions (at 4 +/- 2 degrees C) are necessary to maintain the functionality of the w/o microemulsion containing quercetin and mainly emphasizes the importance of studying physical, chemical, and functional parameters at the same time during stability evaluation of active principles.
Resumo:
A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) Multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the First time, the significance of the ultralow surface tension point oil multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.
Resumo:
We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly occupied. Our method could be applied to other boson fields.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.