912 resultados para finite and infinitesimal models
Resumo:
Purpose: To investigate the effect of licochalcone A (LA) on the inhibition of cell proliferation and ERK1/2 phosphorylation in bladder carcinoma cell lines. Methods: Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Dye-binding method was used to examine the concentration of proteins. Lymphocytes were extracted from mice and after surface staining were subjected to BD fixation and permeabilization for intracellular staining. Flow cytometry was used to measure cellular fluorescence. Results: MTT results revealed a significant decrease in the proliferation of UM-UC-3, J82 and HT-1197 cell lines on treatment with LA. LA also induced reduction in phosphorylation of ERK1/2 in all three carcinoma cell lines. In the mouse model, licochalcone A treatment via intraperitoneal (ip) administration induced a significant decrease in the level of regulatory T cells (Tregs). Comparison of the mouse interferon-α (IFN-α)-treated and LA-treated groups revealed that LA treatment caused enhancement of cytotoxic T lymphocyte (CTL) activity similar to that of IFN-α. Administration of UM-UC-3 cells in C3H/HeN mice resulted in marked reduction in the counts for splenocytes and CD4+ CD25+ Foxp3+ T (regulatory T cells) cell proportion in LA-treated mice compared to untreated control group. Conclusion: Licochalcone A may be of therapeutic importance for the prevention of bladder carcinoma. However, studies are required to ascertain the compound’s usefulness in this regard.
Resumo:
Marine protected areas (MPAs) are today's most important tools for the spatial management and conservation of marine species. Yet, the true protection that they provide to individual fish is unknown, leading to uncertainty associated with MPA effectiveness. In this study, conducted in a recently established coastal MPA in Portugal, we combined the results of individual home range estimation and population distribution models for 3 species of commercial importance and contrasting life histories to infer (1) the size of suitable areas where they would be fully protected and (2) the vulnerability to fishing mortality of each species. Results show that the relationship between MPA size and effective protection is strongly modulated by both the species' home range and the distribution of suitable habitat inside and outside the MPA. This approach provides a better insight into the true potential of MPAs in effectively protecting marine species, since it can reveal the size and location of the areas where protection is most effective and a clear, quantitative estimation of the vulnerability to fishing throughout an entire MPA.
Resumo:
Species occurrence and abundance models are important tools that can be used in biodiversity conservation, and can be applied to predict or plan actions needed to mitigate the environmental impacts of hydropower dams. In this study our objectives were: (i) to model the occurrence and abundance of threatened plant species, (ii) to verify the relationship between predicted occurrence and true abundance, and (iii) to assess whether models based on abundance are more effective in predicting species occurrence than those based on presence–absence data. Individual representatives of nine species were counted within 388 randomly georeferenced plots (10 m × 50 m) around the Barra Grande hydropower dam reservoir in southern Brazil. We modelled their relationship with 15 environmental variables using both occurrence (Generalised Linear Models) and abundance data (Hurdle and Zero-Inflated models). Overall, occurrence models were more accurate than abundance models. For all species, observed abundance was significantly, although not strongly, correlated with the probability of occurrence. This correlation lost significance when zero-abundance (absence) sites were excluded from analysis, but only when this entailed a substantial drop in sample size. The same occurred when analysing relationships between abundance and probability of occurrence from previously published studies on a range of different species, suggesting that future studies could potentially use probability of occurrence as an approximate indicator of abundance when the latter is not possible to obtain. This possibility might, however, depend on life history traits of the species in question, with some traits favouring a relationship between occurrence and abundance. Reconstructing species abundance patterns from occurrence could be an important tool for conservation planning and the management of threatened species, allowing scientists to indicate the best areas for collection and reintroduction of plant germplasm or choose conservation areas most likely to maintain viable populations.
Resumo:
In the Iberian Variscides several first order arcuate structures have been considered. In spite of being highly studied their characterization, formation mechanisms and even existence is still debatable. Themain Ibero-Armorican Arc (IAA) is essentially defined by a predominantNW–SE trend in the Iberian branch and an E–Wtrend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previousmajor one (IAA). Whatever themodels, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian — Carboniferous polyphasic indentation of a Gondwana promontory. In thismodel the CA is essentially a thin-skinned arc,while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.
Resumo:
Shockley diode equation is basic for single diode model equation, which is overly used for characterizing the photovoltaic cell output and behavior. In the standard equation, it includes series resistance (Rs) and shunt resistance (Rsh) with different types of parameters. Maximum simulation and modeling work done previously, related to single diode photovoltaic cell used this equation. However, there is another form of the standard equation which has not included Series Resistance (Rs) and Shunt Resistance (Rsh) yet, as the Shunt Resistance is much bigger than the load resistance and the load resistance is much bigger than the Series Resistance. For this phenomena, very small power loss occurs within a photovoltaic cell. This research focuses on the comparison of two forms of basic Shockley diode equation. This analysis describes a deep understanding of the photovoltaic cell, as well as gives understanding about Series Resistance (Rs) and Shunt Resistance (Rsh) behavior in the Photovoltaic cell. For making estimation of a real time photovoltaic system, faster calculation is needed. The equation without Series Resistance and Shunt Resistance is appropriate for the real time environment. Error function for both Series resistance (Rs) and Shunt resistances (Rsh) have been analyzed which shows that the total system is not affected by this two parameters' behavior.
Resumo:
The mesophotic zone is frequently defined as ranging between 30-40 and 150 m depth. However, these borders are necessarily imprecise due to variations in the penetration of light along the water column related to local factors. Moreover, density of data on mesophotic ecosystems vary along geographical distance, with temperate latitudes largely less explored than tropical situations. This is the case of the Mediterranean Sea, where information on mesophotic ecosystems is largely lower with respect to tropical situations. The lack of a clear definition of the borders of the mesophotic zone may represent a problem when information must be transferred to the policy that requires a coherent spatial definition to plan proper management and conservation measures. The present thesis aims at providing information on the spatial definition of the mesophotic zone in the Mediterranean Sea, its biodiversity and distribution of its ecosystems. The first chapter analyzes information on mesophotic ecosystems in the Mediterranean Sea to identify gaps in the literature and map the mesophotic zone in the Mediterranean Sea using light penetration estimated from satellite data. In the second chapter, different visual techniques to study mesophotic ecosystems are compared to identify the best analytical method to estimate diversity and habitat extension. In the third chapter, a set of Remotely Operated vehicles (ROV) surveys performed on mesophotic assemblages in the Mediterranean Sea are analyzed to describe their taxonomic and functional diversity and environmental factors influencing their structure. A Habitat Suitability Model is run in the fourth chapter to map the distribution of areas suitable for the presence of deep-water oyster reefs in the Adriatic-Ionian area. The fifth chapter explores the mesophotic zone in the northern Gulf of Mexico providing its spatial and vertical extension of the mesophotic zone and information on the diversity associated with mesophotic ecosystems.
Resumo:
Gastrointestinal stromal tumors (GIST) are the most common di tumors of the gastrointestinal tract, arising from the interstitial cells of Cajal (ICCs) or their precursors. The vast majority of GISTs (75–85% of GIST) harbor KIT or PDGFRA mutations. A small percentage of GIST (about 10‐15%) do not harbor any of these driver mutations and have historically been called wild-type (WT). Among them, from 20% to 40% show loss of function of the succinate dehydrogenase complex (SDH), also defined as SDH‐deficient GIST. SDH-deficient GISTs display distinctive clinical and pathological features, and can be sporadic or associated with Carney triad or Carney-Stratakis syndrome. These tumors arise most frequently in the stomach with predilection to distal stomach and antrum, have a multi-nodular growth, display a histological epithelioid phenotype, and present frequent lympho-vascular invasion. Occurrence of lymph node metastases and indolent course are representative features of SDH-deficient GISTs. This subset of GIST is known for the immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals the loss of function of the entire SDH-complex. The overall aim of my PhD project consists of the comprehensive characterization of SDH deficient GIST. Throughout the project, clinical, molecular and cellular characterizations were performed using next-generation sequencing technologies (NGS), that has the potential to allow the identification of molecular patterns useful for the diagnosis and development of novel treatments. Moreover, while there are many different cell lines and preclinical models of KIT/PDGFRA mutant GIST, no reliable cell model of SDH-deficient GIST has currently been developed, which could be used for studies on tumor evolution and in vitro assessments of drug response. Therefore, another aim of this project was to develop a pre-clinical model of SDH deficient GIST using the novel technology of induced pluripotent stem cells (iPSC).
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
Bioelectronic interfaces have significantly advanced in recent years, offering potential treatments for vision impairments, spinal cord injuries, and neurodegenerative diseases. However, the classical neurocentric vision drives the technological development toward neurons. Emerging evidence highlights the critical role of glial cells in the nervous system. Among them, astrocytes significantly influence neuronal networks throughout life and are implicated in several neuropathological states. Although they are incapable to fire action potentials, astrocytes communicate through diverse calcium (Ca2+) signalling pathways, crucial for cognitive functions and brain blood flow regulation. Current bioelectronic devices are primarily designed to interface neurons and are unsuitable for studying astrocytes. Graphene, with its unique electrical, mechanical and biocompatibility properties, has emerged as a promising neural interface material. However, its use as electrode interface to modulate astrocyte functionality remains unexplored. The aim of this PhD work was to exploit Graphene-oxide (GO) and reduced GO (rGO)-coated electrodes to control Ca2+ signalling in astrocytes by electrical stimulation. We discovered that distinct Ca2+dynamics in astrocytes can be evoked, in vitro and in brain slices, depending on the conductive/insulating properties of rGO/GO electrodes. Stimulation by rGO electrodes induces intracellular Ca2+ response with sharp peaks of oscillations (“P-type”), exclusively due to Ca2+ release from intracellular stores. Conversely, astrocytes stimulated by GO electrodes show slower and sustained Ca2+ response (“S-type”), largely mediated by external Ca2+ influx through specific ion channels. Astrocytes respond faster than neurons and activate distinct G-Protein Coupled Receptor intracellular signalling pathways. We propose a resistive/insulating model, hypothesizing that the different conductivity of the substrate influences the electric field at the cell/electrolyte or cell/material interfaces, favouring, respectively, the Ca2+ release from intracellular stores or the extracellular Ca2+ influx. This research provides a simple tool to selectively control distinct Ca2+ signals in brain astrocytes in neuroscience and bioelectronic medicine.
Resumo:
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
In 'Involutory reflection groups and their models' (F. Caselli, 2010), a uniform Gelfand model is constructed for all complex reflection groups G(r,p,n) satisfying GCD(p,n)=1,2 and for all their quotients modulo a scalar subgroup. The present work provides a refinement for this model. The final decomposition obtained is compatible with the Robinson-Schensted generalized correspondence.
Resumo:
Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.