982 resultados para field theories
Resumo:
In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler-Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell's relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range: 0-20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N = 2 supersymmetric model (with one chiral field) for all values of the `t Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.
Resumo:
The advent of nanotechnology has necessitated a better understanding of how material microstructure changes at the atomic level would affect the macroscopic properties that control the performance. Such a challenge has uncovered many phenomena that were not previously understood and taken for granted. Among them are the basic foundation of dislocation theories which are now known to be inadequate. Simplifying assumptions invoked at the macroscale may not be applicable at the micro- and/or nanoscale. There are implications of scaling hierrachy associated with in-homegeneity and nonequilibrium. of physical systems. What is taken to be homogeneous and equilibrium at the macroscale may not be so when the physical size of the material is reduced to microns. These fundamental issues cannot be dispensed at will for the sake of convenience because they could alter the outcome of predictions. Even more unsatisfying is the lack of consistency in modeling physical systems. This could translate to the inability for identifying the relevant manufacturing parameters and rendering the end product unpractical because of high cost. Advanced composite and ceramic materials are cases in point. Discussed are potential pitfalls for applying models at both the atomic and continuum levels. No encouragement is made to unravel the truth of nature. Let it be partiuclates, a smooth continuum or a combination of both. The present trend of development in scaling tends to seek for different characteristic lengths of material microstructures with or without the influence of time effects. Much will be learned from atomistic simulation models to show how results could differ as boundary conditions and scales are changed. Quantum mechanics, continuum and cosmological models provide evidence that no general approach is in sight. Of immediate interest is perhaps the establishment of greater precision in terminology so as to better communicate results involving multiscale physical events.
Resumo:
In this thesis, we discuss 3d-3d correspondence between Chern-Simons theory and three-dimensional N = 2 superconformal field theory. In the 3d-3d correspondence proposed by Dimofte-Gaiotto-Gukov information of abelian flat connection in Chern-Simons theory was not captured. However, considering M-theory configuration giving the 3d-3d correspondence and also other several developments, the abelian flat connection should be taken into account in 3d-3d correspondence. With help of the homological knot invariants, we construct 3d N = 2 theories on knot complement in 3-sphere for several simple knots. Previous theories obtained by Dimofte-Gaiotto-Gukov can be obtained by Higgsing of the full theories. We also discuss the importance of all flat connections in the 3d-3d correspondence by considering boundary conditions in 3d N = 2 theories and 3-manifold.
Resumo:
Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.
Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.
The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.
The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.
Resumo:
Gravitational double layers, unlike their classical electromagnetic counterparts, are thought to be forbidden in gravity theories. It has been recently shown, however, that they are feasible in, for instance, gravity theories with a Lagrangian quadratic in the curvature. This is surprising with many potential consequences and the possibility of new physical behaviours. While a clear interpretation seems elusive, several lines of research are open. I present the field equations for double layers, the new physical quantities arising, and several explicit examples
Resumo:
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.
Resumo:
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Resumo:
Trust and cooperation constitute cornerstones of common-pool resource theory, showing that "prosocial" strategies among resource users can overcome collective action problems and lead to sustainable resource governance. Yet, antisocial behavior and especially the coexistence of prosocial and antisocial behaviors have received less attention. We broaden the analysis to include the effects of both "prosocial" and "antisocial" interactions. We do so in the context of marine protected areas (MPAs), the most prominent form of biodiversity conservation intervention worldwide. Our multimethod approach relied on lab-in-the-field economic experiments (n = 127) in two MPA and two non-MPA communities in Baja California, Mexico. In addition, we deployed a standardized fishers' survey (n = 544) to verify the external validity of our findings and expert informant interviews (n = 77) to develop potential explanatory mechanisms. In MPA sites, prosocial and antisocial behavior is significantly higher, and the presence of antisocial behavior does not seem to have a negative effect on prosocial behavior. We suggest that market integration, economic diversification, and strengthened group identity in MPAs are the main potential mechanisms for the simultaneity of prosocial and antisocial behavior we observed. This study constitutes a first step in better understanding the interaction between prosociality and antisociality as related to natural resources governance and conservation science, integrating literatures from social psychology, evolutionary anthropology, behavioral economics, and ecology.
Resumo:
Internationally literature emphasises concern regarding the phenomenon of violence and aggression within the emergency field. This paper emphasises the important role education and training may play in reducing the risk of staff being exposed to violent or aggressive experiences. Furthermore, the paper emphasises, explores and discusses well recognised theories relating to aggression development. These theories can be used to explain both organisational strategies designed to minimise aggression in the emergency department and situational factors contributing to the development of aggressive interactions.
Resumo:
Aiming to establish a rigorous link between macroscopic random motion (described e.g. by Langevin-type theories) and microscopic dynamics, we have undertaken a kinetic-theoretical study of the dynamics of a classical test-particle weakly coupled to a large heat-bath in thermal equilibrium. Both subsystems are subject to an external force field. From the (time-non-local) generalized master equation a Fokker-Planck-type equation follows as a "quasi-Markovian" approximation. The kinetic operator thus defined is shown to be ill-defined; in specific, it does not preserve the positivity of the test-particle distribution function f(x, v; t). Adopting an alternative approach, previously introduced for quantum open systems, is proposed to lead to a correct kinetic operator, which yields all the expected properties. A set of explicit expressions for the diffusion and drift coefficients are obtained, allowing for modelling macroscopic diffusion and dynamical friction phenomena, in terms of an external field and intrinsic physical parameters.
Resumo:
A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.
Resumo:
Bronfenbrenner’s model of bio-ecological development has been utilized widely within the social sciences, in the field of human development, and in social work. Yet, while championing the rights of marginalised families and communities, Bronfenbrenner had under-theorized the role of power, agency and structure in shaping the ‘person-context’ interrelationship, life opportunities and social well-being. To respond to this deficit, this paper firstly outlines Bronfenbrenner’s ‘person, process, context, time’ model. Secondly, it then seeks to loosely align aspects of Bronfenbrenner’s model with Bourdieu’s analytical categories of habitus, field and capital. It is argued that these latter categories enable social workers to develop a critical ecology of child development, taking account of power and the interplay between agency and structure. The implications of the alignment for child and family social work are considered in the final section.
Resumo:
This study sought to explore ways to work with a group of young people through an arts-based approach to the teaching of literacy. Through the research, the author integrated her own reflexivity applying arts methods over the past decade. The author’s past experiences were strongly informed by theories such as caring theory and maternal pedagogy, which also informed the research design. The study incorporated qualitative data collection instruments comprising interviews, journals, sketches, artifacts, and teacher field notes. Data were collected by 3 student participants for the duration of the research. Study results provide educators with data on the impact of creating informal and alternative ways to teach literacy and maintain student engagement with resistant learners.
Resumo:
This thesis deals with some aspects of the Physics of the early universe, like phase transitions, bubble nucleations and premodial density perturbations which lead to the formation structures in the universe. Quantum aspects of the gravitational interaction play an essential role in retical high-energy physics. The questions of the quantum gravity are naturally connected with early universe and Grand Unification Theories. In spite of numerous efforts, the various problems of quantum gravity remain still unsolved. In this condition, the consideration of different quantum gravity models is an inevitable stage to study the quantum aspects of gravitational interaction. The important role of gravitationally coupled scalar field in the physics of the early universe is discussed in this thesis. The study shows that the scalar-gravitational coupling and the scalar curvature did play a crucial role in determining the nature of phase transitions that took place in the early universe. The key idea in studying the formation structure in the universe is that of gravitational instability.