842 resultados para farm accountancy data network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bologna Process aimed to build a European Higher Education Area promoting student's mobility. The adoption of Bologna Declaration directives requires a self management distributed approach to deal with student's mobility, allowing frequent updates in institutions rules or legislation. This paper suggests a computational system architecture, which follows a social network design. A set of structured annotations is proposed in order to organize the user's information. For instance, when the user is a student its annotations are organized into an academic record. The academic record data is used to discover interests, namely mobility interests, among students that belongs the academic network. These ideas have been applied into a demonstrator that includes a mobility simulator to compare and show the student's academic evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O uso da energia eólica para a produção de eletricidade apresenta na última década um crescimento apreciável. Monitorizar o desempenho dos aerogeradores torna-se um processo incontornável, quer por motivos financeiros, quer por questões operacionais. Os investimentos despendidos na construção de parques eólicos são muito consideráveis, pelo que é essencial a análise constante dos aspetos preponderantes no retorno do investimento. A maximização da energia produzida por cada aerogerador é o objetivo principal da monitorização dos parques eólicos. Os sistemas Supervisory Control and Data Acquisition (SCADAs) instalados nos parques eólicos permitem uma supervisão em tempo real relativamente ao estado e funcionamento dos aerogeradores, adquirindo uma elevada importância na avaliação dos rendimentos energéticos e anomalias de funcionamento, garantido desta forma melhorias de produtividade. O objetivo deste trabalho é estimar a energia produzida pelos aerogeradores quando ocorrem falhas de comunicação com o seu contador interno ou avaria do mesmo. A ocorrência destas situações não permite a monitorização da energia produzida durante esse período. Foram analisados dados operacionais dos aerogeradores relativos a um parque eólico localizado na zona Norte de Portugal, sendo usados os dados recolhidos pelo sistema SCADA sobre a forma de médias de 10 min referentes ao período de janeiro de 2011 a agosto 2011. O desempenho da rede neuronal depende da qualidade e quantidade do conjunto de dados usados para o treino da rede. Os dados usados devem representar de forma fiel o estado que se pretende para o equipamento. Para a obtenção do objetivo proposto foi fundamental a identificação das grandezas disponíveis a utilizar no método de cálculo da energia produzida. Os resultados obtidos com aplicação das redes neuronais no método de cálculo da energia produzida por aerogeradores demonstram que independentemente do período de indisponibilidade da informação referente à energia produzida é possível estimar o valor da mesma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing complexity of current networks, it became evident the need for Self-Organizing Networks (SON), which aims to automate most of the associated radio planning and optimization tasks. Within SON, this paper aims to optimize the Neighbour Cell List (NCL) for Long Term Evolution (LTE) evolved NodeBs (eNBs). An algorithm composed by three decisions were were developed: distance-based, Radio Frequency (RF) measurement-based and Handover (HO) stats-based. The distance-based decision, proposes a new NCL taking account the eNB location and interference tiers, based in the quadrants method. The last two algorithms consider signal strength measurements and HO statistics, respectively; they also define a ranking to each eNB and neighbour relation addition/removal based on user defined constraints. The algorithms were developed and implemented over an already existent radio network optimization professional tool. Several case studies were produced using real data from a Portuguese LTE mobile operator. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long term evolution (LTE) is one of the latest standards in the mobile communications market. To achieve its performance, LTE networks use several techniques, such as multi-carrier technique, multiple-input-multiple-output and cooperative communications. Inside cooperative communications, this paper focuses on the fixed relaying technique, presenting a way for determining the best position to deploy the relay station (RS), from a set of empirical good solutions, and also to quantify the associated performance gain using different cluster size configurations. The best RS position was obtained through realistic simulations, which set it as the middle of the cell's circumference arc. Additionally, it also confirmed that network's performance is improved when the number of RSs is increased. It was possible to conclude that, for each deployed RS, the percentage of area served by an RS increases about 10 %. Furthermore, the mean data rate in the cell has been increased by approximately 60 % through the use of RSs. Finally, a given scenario with a larger number of RSs, can experience the same performance as an equivalent scenario without RSs, but with higher reuse distance. This conduces to a compromise solution between RS installation and cluster size, in order to maximize capacity, as well as performance.