991 resultados para exercise mode
Resumo:
The pull-out force of some outer walls against other inner walls in multi-walled carbon nanotubes (MWCNTs) was systematically studied by molecular mechanics simulations. The obtained results reveal that the pull-out force is proportional to the square of the diameter of the immediate outer wall on the sliding interface, which highlights the primary contribution of the capped section of MWCNT to the pull-out force. A simple empirical formula was proposed based on the numerical results to predict the pull-out force for an arbitrary pull-out in a given MWCNT directly from the diameter of the immediate outer wall on the sliding interface. Moreover, tensile tests for MWCNTs with and without acid-treatment were performed with a nanomanipulator inside a vacuum chamber of a scanning electron microscope (SEM) to validate the present empirical formula. It was found that the theoretical pull-out forces agree with the present and some previous experimental results very well.
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
Although the Uniform Civil Procedure Rules 1999 (Qld) (UCPR) have always included a power for the court to order a party to pay an amount for costs to be fixed by the court, until recently the power was rarely used in the higher courts. In light of recent practice directions, and the changes to the procedures for assessment of costs contained in the new Chapter 17A of the UCPR, this is no longer the case. The judgment of Mullins J in ASIC v Atlantic 3 Financial (Aust) Pty Ltd [2008] QSC 9 provides some helpful guidance for practitioners about the principles which might be applied.
Resumo:
There is evidence that contact with the natural environment and green space promotes good health. It is also well known that participation in regular physical activity generates physical and psychological health benefits. The authors have hypothesised that ‘green exercise’ will improve health and psychological well-being, yet few studies have quantified these effects. This study measured the effects of 10 green exercise case studies (including walking, cycling, horse-riding, fishing, canal-boating and conservation activities) in four regions of the UK on 263 participants. Even though these participants were generally an active and healthy group, it was found that green exercise led to a significant improvement in self-esteem and total mood disturbance (with anger-hostility, confusion-bewilderment, depression-dejection and tension-anxiety all improving post-activity). Self-esteem and mood were found not to be affected by the type, intensity or duration of the green exercise, as the results were similar for all 10 case studies. Thus all these activities generated mental health benefits, indicating the potential for a wider health and well-being dividend from green exercise. Green exercise thus has important implications for public and environmental health, and for a wide range of policy sectors.
Resumo:
Background Despite its efficacy and cost-effectiveness, exercise-based cardiac rehabilitation is undertaken by less than one-third of clinically eligible cardiac patients in every country for which data is available. Reasons for non-participation include the unavailability of hospital-based rehabilitation programs, or excessive travel time and distance. For this reason, there have been calls for the development of more flexible alternatives. Methodology and Principal Findings We developed a system to enable walking-based cardiac rehabilitation in which the patient's single-lead ECG, heart rate, GPS-based speed and location are transmitted by a programmed smartphone to a secure server for real-time monitoring by a qualified exercise scientist. The feasibility of this approach was evaluated in 134 remotely-monitored exercise assessment and exercise sessions in cardiac patients unable to undertake hospital-based rehabilitation. Completion rates, rates of technical problems, detection of ECG changes, pre- and post-intervention six minute walk test (6 MWT), cardiac depression and Quality of Life (QOL) were key measures. The system was rated as easy and quick to use. It allowed participants to complete six weeks of exercise-based rehabilitation near their homes, worksites, or when travelling. The majority of sessions were completed without any technical problems, although periodic signal loss in areas of poor coverage was an occasional limitation. Several exercise and post-exercise ECG changes were detected. Participants showed improvements comparable to those reported for hospital-based programs, walking significantly further on the post-intervention 6 MWT, 637 m (95% CI: 565–726), than on the pre-test, 524 m (95% CI: 420–655), and reporting significantly reduced levels of cardiac depression and significantly improved physical health-related QOL. Conclusions and Significance The system provided a feasible and very flexible alternative form of supervised cardiac rehabilitation for those unable to access hospital-based programs, with the potential to address a well-recognised deficiency in health care provision in many countries. Future research should assess its longer-term efficacy, cost-effectiveness and safety in larger samples representing the spectrum of cardiac morbidity and severity.
Resumo:
Background Physical activity may reduce the risk of adverse maternal outcomes, yet there are very few studies that have examined the correlates of exercise amongst obese women during pregnancy. We examined which relevant sociodemographic, obstetric, and health behaviour variables and pregnancy symptoms were associated with exercise in a small sample of obese pregnant women. Methods This was a secondary analysis using data from an exercise intervention for the prevention of gestational diabetes in obese pregnant women. Using the Pregnancy Physical Activity Questionnaire (PPAQ), 50 obese pregnant women were classified as "Exercisers" if they achieved ≥900 kcal/wk of exercise and "Non-Exercisers" if they did not meet this criterion. Analyses examined which relevant variables were associated with exercise status at 12, 20, 28 and 36 weeks gestation. Results Obese pregnant women with a history of miscarriage; who had children living at home; who had a lower pre-pregnancy weight; reported no nausea and vomiting; and who had no lower back pain, were those women who were most likely to have exercised in early pregnancy. Exercise in late pregnancy was most common among tertiary educated women. Conclusions Offering greater support to women from disadvantaged backgrounds and closely monitoring women who report persistent nausea and vomiting or lower back pain in early pregnancy may be important. The findings may be particularly useful for other interventions aimed at reducing or controlling weight gain in obese pregnant women.
Resumo:
Although conditioning is routinely used in mechanical tests of tendon in vitro, previous in vivo research evaluating the influence of body anthropometry on Achilles tendon thickness has not considered its potential effects on tendon structure. This study evaluated the relationship between Achilles tendon thickness and body anthropometry in healthy adults both before and after resistive ankle plantarflexion exercise. A convenience sample of 30 healthy male adults underwent sonographic examination of the Achilles tendon in addition to standard anthropometric measures of stature and body weight. A 10-5 MHz linear array transducer was used to acquire longitudinal sonograms of the Achilles tendon, 20 mm proximal to the tendon insertion. Participants then completed a series (90-100 repetitions) of conditioning exercises against an effective resistance between 100% and 150% body weight. Longitudinal sonograms were repeated immediately on completion of the exercise intervention, and anteroposterior Achilles tendon thickness was determined. Achilles tendon thickness was significantly reduced immediately following conditioning exercise (t = 9.71, P < 0.001), resulting in an average transverse strain of -18.8%. In contrast to preexercise measures, Achilles tendon thickness was significantly correlated with body weight (r = 0.72, P < 0.001) and to a lesser extent height (r = 0.45, P < 0.01) and body mass index (r = 0.63, P < 0.001) after exercise. Conditioning of the Achilles tendon via resistive ankle exercises induces alterations in tendon structure that substantially improve correlations between Achilles tendon thickness and body anthropometry. It is recommended that conditioning exercises, which standardize the load history of tendon, are employed before measurements of sonographic tendon thickness in vivo.
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.