227 resultados para eucalypt


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear networks has an important influence on the persistence of biota within human-dominated landscapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the relationship between community composition and ecosystem function is essential for managing forests with complex disturbance regimes. Studies of animal responses to fire and timber harvesting in forest ecosystems typically focus on a single level of community diversity. Measures of species abundance and diversity at the community level, along with measures of functional diversity that incorporate information on species traits, provide opportunities for complementary insights into biodiversity responses to disturbances. We quantified community and functional responses of a temperate forest lizard community to fire and rotational logging using metrics including species-specific abundance, community abundance, species richness and evenness, as well as trait-based measures of functional diversity. We used non-linear regression models to examine the relationships between reptile data and time since fire and timber harvesting, using sites arrayed along a 30-years post-disturbance chronosequence. We modelled responses separately in two major vegetation types: coastal Banksia woodland and lowland eucalypt forests. Species and community measures offered different insights into the role of fire and logging. Species responses to disturbance differed between disturbance type and vegetation type. Four species exhibited significant population responses to either fire or timber harvesting, while the rest were unaffected by either disturbance. At the community level, species richness and community abundance increased significantly with time since fire in woodland vegetation. In forest vegetation, community abundance decreased with time since fire. Surprisingly, community evenness and functional diversity did not show marked responses to fire or timber harvesting. This is likely a result of trait homogeneity and the asynchrony in species responses to disturbance. We advocate using multiple measures of community composition - incorporating species-specific information, community metrics and functional traits - to ensure a more holistic understanding of disturbance ecology in forest landscapes.