977 resultados para estrogen, prostate, androgens, aromatase, development, ERalpha, ERbeta
Resumo:
Purpose: Aspirin use is associated with reduced risk of, and death from, prostate cancer. Our aim was to determine whether low-dose aspirin use after a prostate cancer diagnosis was associated with reduced prostate cancer-specific mortality.
Methods: A cohort of newly diagnosed prostate cancer patients (1998–2006) was identified in the UK Clinical Practice Research Datalink (confirmed by cancer registry linkage). A nested case–control analysis was conducted using conditional logistic regression to compare aspirin usage in cases (prostate cancer deaths) with up to three controls (matched by age and year of diagnosis).
Results: Post-diagnostic low-dose aspirin use was identified in 52 % of 1,184 prostate cancer-specific deaths and 39 % of 3,531 matched controls (unadjusted OR 1.51, 95 % CI 1.19, 1.90; p < 0.001). After adjustment for confounders including treatment and comorbidities, this association was attenuated (adjusted OR 1.02 95 % CI 0.78, 1.34; p = 0.86). Adjustment for estrogen therapy accounted for the majority of this attenuation. There was also no evidence of dose–response association after adjustments. Compared with no use, patients with 1–11 prescriptions and 12 or more prescriptions had adjusted ORs of 1.07 (95 % CI 0.78, 1.47; p = 0.66) and 0.97 (95 % CI 0.69, 1.37; p = 0.88), respectively. There was no evidence of a protective association between low-dose aspirin use in the year prior to diagnosis and prostate cancer-specific mortality (adjusted OR 1.04 95 % CI 0.89, 1.22; p = 0.60).
Conclusion: We found no evidence of an association between low-dose aspirin use before or after diagnosis and risk of prostate cancer-specific mortality, after potential confounders were accounted for, in UK prostate cancer patients.
Resumo:
Cervical cancer is the third most prevalent cancer in women and disproportionately affects those in low resource settings due to limited programs for screening and prevention. In the developed world treatment for the disease in the non-metastasised state usually takes the form of surgical intervention and/or radiotherapy. In the developing world such techniques are less widely available. This paper describes the development of an intravaginal ring for the localised delivery of a chemotherapeutic drug to the cervix that has the potential to reduce the need for surgical intervention and will also provide a novel anti-cancer therapy for women in low resource settings. Disulfiram has demonstrated antineoplastic action against prostate, breast and lung cancer. Both PEVA and silicone elastomer were investigated for suitability as materials in the manufacture of DSF eluting intravaginal rings. DSF inhibited the curing process of the silicone elastomer, therefore PEVA was chosen as the material to manufacture the DSF-loaded vaginal rings. The vaginal rings had an excellent content uniformity while the DSF remained stable throughout the manufacturing process. Furthermore, the rings provided diffusion controlled release of DSF at levels well in excess of the IC50 value for the HeLa cervical cancer cell line.
Resumo:
During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.
Resumo:
The molecular basis for the progression of breast and prostate cancer from hormone dependent to hormone independent disease remains a critical issue in the management of these two cancers. The DNA mismatch repair system is integral to the maintenance of genomic stability and suppression of tumorigenesis. No firm consensus exists regarding the implications of mismatch repair (MMR) deficiencies in the development of breast or prostate cancer. However, recent studies have reported an association between mismatch repair deficiency and loss of specific hormone receptors, inferring a potential role for mismatch repair deficiency in this transition. An updated review of the experimental data supporting or contradicting the involvement of MMR defects in the development and progression of breast and prostate cancer will be provided with particular emphasis on their implications in the transition to hormone independence.
Resumo:
Aberrant DNA methylation is one of the hallmarks of carcinogenesis and has been recognized in cancer cells for more than 20 years. The role of DNA methylation in malignant transformation of the prostate has been intensely studied, from its contribution to the early stages of tumour development to the advanced stages of androgen independence. The most significant advances have involved the discovery of numerous targets such as GSTP1, Ras-association domain family 1A (RASSF1A) and retinoic acid receptor beta2 (RARbeta2) that become inactivated through promoter hypermethylation during the course of disease initiation and progression. This has provided the basis for translational research into methylation biomarkers for early detection and prognosis of prostate cancer. Investigations into the causes of these methylation events have yielded little definitive data. Aberrant hypomethylation and how it impacts upon prostate cancer has been less well studied. Herein we discuss the major developments in the fields of prostate cancer and DNA methylation, and how this epigenetic modification can be harnessed to address some of the key issues impeding the successful clinical management of prostate cancer.
Resumo:
Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49/79 primary prostate adenocarcinoma and 7/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5/37 benign prostatic hyperplasia (P < 0.0001) and in 0/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.
Resumo:
Tumour hypoxia is progressively emerging as a common feature of prostate tumours associated with poor prognosis. While the molecular basis of disease progression is increasingly well documented, the potential role of hypoxia in these processes remains poorly evaluated. By dissecting the impact of hypoxia-inducible factor 1 alpha on molecular responses, this review provides evidence for a powerful protecting role of oxygen deprivation against oxidative stress injury, androgen deprivation, chemotherapeutic and radiation cytotoxicity. We propose hypoxia as a potent tumour-induced shield against destruction and suggest its targeting may need to be routinely addressed in the management of prostate cancer.
Resumo:
UNLABELLED: Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete.
IMPLICATIONS: This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Resumo:
Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.
Resumo:
Prostate cancer treatment is dominated by strategies to control androgen receptor (AR) activity. AR has an impact on prostate cancer development through the regulation of not only transcription networks but also genomic stability and DNA repair, as manifest in the emergence of gene fusions. Whole-genome maps of AR binding sites and transcript profiling have shown changes in the recruitment and regulatory effect of AR on transcription as prostate cancer progresses. Defining other factors that are involved in this reprogramming of AR function gives various opportunities for cancer detection and therapeutic intervention.
Resumo:
Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.
Resumo:
BACKGROUND: Prostate cancer (PCa) is a clinically and pathologically heterogeneous disease. The rapid development of sequencing technology has the potential to deliver new biomarkers with emphasis on aggressive disease and to revolutionise personalised cancer treatment. However, a prostate harbouring cancer commonly contains multiple separate tumour foci, with the potential to aggravate tumour sampling. The level of intraprostatic tumour heterogeneity remains to be determined.
OBJECTIVE: To determine the level of intraprostatic tumour heterogeneity through genome-wide, high-resolution profiling of multiple tumour samples from the same individual.
DESIGN, SETTINGS, AND PARTICIPANTS: Multiple tumour samples were obtained from four individuals following radical prostatectomy. One individual (SWE-1) contained >70% cancer cells in all tumour samples, whereas the other three (SWE-2 to SWE-4) required the use of laser capture microdissection for tumour cell enrichment. Subsequently, DNA was extracted from all tissue samples, and exome sequencing was performed. All tumour foci of SWE-1 were also profiled using a high-resolution array for the identification of copy number alterations (CNA).
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Shared somatic high-frequency single nucleotide variants (SNV) and CNAs were used to infer the level of intraprostatic tumour heterogeneity.
RESULTS AND LIMITATIONS: No high-frequency mutations, common for the three tumour samples of SWE-1, were identified. Ten randomly chosen positions were validated with Sanger sequencing in all foci, which verified the exome data. The high level of intraprostatic heterogeneity was consistent in all individuals. In total, three out of four individuals harboured tumours without an apparent common somatic denominator. Although we cannot exclude the presence of common structural rearrangements, a high-density array was used for the detection of deletions and amplifications in SWE-1, which agreed with the exome data.
CONCLUSIONS: We present evidence for the presence of somatically independent tumours within the same prostate. This finding will have implications for personalised cancer treatment and biomarker discovery.
Resumo:
Prostate cancer development and progression are associated with alterations in expression and function of elements of cytokine networks, some of which can activate multiple signaling pathways. Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1, a regulator of cytokine signaling, may be implicated in the modulation of cellular events during carcinogenesis. This study was designed to investigate the functional significance of PIAS1 in models of human prostate cancer. We demonstrate for the first time that PIAS1 protein expression is significantly higher in malignant areas of clinical prostate cancer specimens than in normal tissues, thus suggesting a growth-promoting role for PIAS1. Expression of PIAS1 was observed in the majority of tested prostate cancer cell lines. In addition, we investigated the mechanism by which PIAS1 might promote prostate cancer and found that down-regulation of PIAS1 leads to decreased proliferation and colony formation ability of prostate cancer cell lines. This decrease correlates with cell cycle arrest in the G0/G1 phase, which is mediated by increased expression of p21(CIP1/WAF1). Furthermore, PIAS1 overexpression positively influences cell cycle progression and thereby stimulates proliferation, which can be mechanistically explained by a decrease in the levels of cellular p21. Taken together, our data reveal an important new role for PIAS1 in the regulation of cell proliferation in prostate cancer.
Resumo:
Alterations in transcriptional programs are fundamental to the development of cancers. The androgen receptor is central to the normal development of the prostate gland and to the development of prostate cancer. To a large extent this is believed to be due to the control of gene expression through the interaction of the androgen receptor with chromatin and subsequently with coregulators and the transcriptional machinery. Unbiased genome-wide studies have recently uncovered the recruitment sites that are gene-distal and intragenic rather than associated with proximal promoter regions. Whilst expression profiles from AR-positive primary prostate tumours and cell lines can directly relate to the AR cistrome in prostate cancer cells, this distribution raises significant challenges in making direct mechanistic connections. Furthermore, extrapolating from datasets assembled in one model to other model systems or clinical samples poses challenges if we are to use the AR-directed transcriptome to guide the development of novel biomarkers or treatment decisions. This review will provide an overview of the androgen receptor before addressing the challenges and opportunities created by whole-genome studies of the interplay between the androgen receptor and chromatin.
Resumo:
Chromatin immunoprecipitation (ChIP) is an invaluable tool in the study of transcriptional regulation. ChIP methods require both a priori knowledge of the transcriptional regulators which are important for a given biological system and high-quality specific antibodies for these targets. The androgen receptor (AR) is known to play essential roles in male sexual development, in prostate cancer and in the function of many other AR-expressing cell types (e.g. neurons and myocytes). As a ligand-activated transcription factor the AR also represents an endogenous, inducible system to study transcriptional biology. Therefore, ChIP studies of the AR can make use of treatment contrast experiments to define its transcriptional targets. To date several studies have mapped AR binding sites using ChIP in combination with genome tiling microarrays (ChIP-chip) or direct sequencing (ChIP-seq), mainly in prostate cancer cell lines and with varying degrees of genomic coverage. These studies have provided new insights into the DNA sequences to which the AR can bind, identified AR cooperating transcription factors, mapped thousands of potential AR regulated genes and provided insights into the biological processes regulated by the AR. However, further ChIP studies will be required to fully characterise the dynamics of the AR-regulated transcriptional programme, to map the occupancy of different AR transcriptional complexes which result in different transcriptional output and to delineate the transcriptional networks downstream of the AR.