954 resultados para enzymatic hydrolysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cohesin-dockerin interaction in Clostridium thermocellum cellulosome mediates the tight binding of cellulolytic enzymes to the cellulosome-integrating protein CipA. Here, this interaction was used to study the effect of different cellulose-binding domains (CBDs) on the enzymatic activity of C. thermocellum endoglucanase CelD (1,4-β-d endoglucanase, EC3.2.1.4) toward various cellulosic substrates. The seventh cohesin domain of CipA was fused to CBDs originating from the Trichoderma reesei cellobiohydrolases I and II (CBDCBH1 and CBDCBH2) (1,4-β-d glucan-cellobiohydrolase, EC3.2.1.91), from the Cellulomonas fimi xylanase/exoglucanase Cex (CBDCex) (β-1,4-d glucanase, EC3.2.1.8), and from C. thermocellum CipA (CBDCipA). The CBD-cohesin hybrids interacted with the dockerin domain of CelD, leading to the formation of CelD-CBD complexes. Each of the CBDs increased the fraction of cellulose accessible to hydrolysis by CelD in the order CBDCBH1 < CBDCBH2 ≈ CBDCex < CBDCipA. In all cases, the extent of hydrolysis was limited by the disappearance of sites accessible to CelD. Addition of a batch of fresh cellulose after completion of the reaction resulted in a new burst of activity, proving the reversible binding of the intact complexes despite the apparent binding irreversibility of some CBDs. Furthermore, burst of activity also was observed upon adding new batches of CelD–CBD complexes that contained a CBD differing from the first one. This complementation between different CBDs suggests that the sites made available for hydrolysis by each of the CBDs are at least partially nonoverlapping. The only exception was CBDCipA, whose sites appeared to overlap all of the other sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cellular responses to stimulation of cell-surface receptors by extracellular signals are transmitted across the plasma membrane by hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2), which is cleaved into diacylglycerol and inositol-1,4,5-tris-phosphate by phosphoinositide-specific phospholipase C (PI-PLC). We present structural, biochemical, and RNA expression data for three distinct PI-PLC isoforms, StPLC1, StPLC2, and StPLC3, which were cloned from a guard cell-enriched tissue preparation of potato (Solanum tuberosum) leaves. All three enzymes contain the catalytic X and Y domains, as well as C2-like domains also present in all PI-PLCs. Analysis of the reaction products obtained from PIP2 hydrolysis unequivocally identified these enzymes as genuine PI-PLC isoforms. Recombinant StPLCs showed an optimal PIP2-hydrolyzing activity at 10 μm Ca2+ and were inhibited by Al3+ in equimolar amounts. In contrast to PI-PLC activity in plant plasma membranes, however, recombinant enzymes could not be activated by Mg2+. All three stplc genes are expressed in various tissues of potato, including leaves, flowers, tubers, and roots, and are affected by drought stress in a gene-specific manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Litchi (Litchi chinensis Sonn.) is a subtropical to tropical fruit of high commercial value in international trade. However, harvested litchi fruit rapidly lose their bright red skin colour. Peel browning of harvested litchi fruit has largely been attributed to rapid degradation of red anthocyanin pigments. This process is associated with enzymatic oxidation of phenolics by polyphenol oxidase (PPO) and/or peroxidase (POD). PRO and POD from litchi pericarp cannot directly oxidize anthocyanins. Moreover, PPO substrates in the pericarp are not well characterised. Consequently, the roles of PPO and POD in litchi browning require further investigation. Recently, an anthocyanase catalysing the hydrolysis of sugar moieties from anthocyanin to anthocyanidin has been identified in litchi peel for the first time. Thus, litchi enzymatic browning may involve an anthocyanase-anthocyanin-phenolic-PPO reaction. Current research focus is on characterising the properties of the anthocyanase involved in anthocyanin degradation. Associated emphasis is on maintenance of membrane functions in relation to loss of compartmentation between litchi peel oxidase enzymes and their substrates. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this work have been to identify an enzymatic reaction system suitable to investigate and develop the high-speed centrifuge as a novel reaction system for performing such reactions. The production of galacto-oligosaccharides by the trans-galactosyl activity of the enzyme β-galactosidase on lactose monohydrate was identified as a model enzymatic system to elucidate the principles of this type of process. Galacto-oligosaccharides have attracted considerable commercial interest as food additives which have been shown to be beneficial to the health of the human gastrointestinal tract. The development of a single unit operation capable of controlling the biosynthesis of galacto-oligosaccharides whilst simultaneously separating the enzyme from the reaction products would reduce downstream processing costs. This thesis shows for the first time that by using a combination of (a) immobilised or insolubilised β-galactosidase , (b) a rate-zonal centrifugation technique, and (c) various applied centrifugal fields, that a high-speed centrifuge could be used to control the formation of galacto-oligosaccharides whilst removing the enzyme from the reaction products. By layering a suspension of insolubilised β-galactosidase on top of a lactose monohydrate density gradient and centrifuging, the applied centrifugal fields generated produced sedimentation of the enzyme particles through the substrate. The higher sedimentation rate of the enzyme compared to those of the reaction products allowed for separation to take place. Complete sedimentation, or pelleting of the enzyme permits the possible recovery and re-use. Insolubilisation of the enzyme allowed it to be sedimented through the substrate gradient using much lower applied centrifugal fields than that required to sediment free soluble enzyme and this allowed for less expensive centrifugation equipment to be used. Using free soluble and insolubilised β-galactosidase stirred-batch reactions were performed to investigate the kinetics of lactose monohydrate hydrolysis and galacto-oligosaccharide formation. Based on these results a preliminary mathematical model based on Michaelis-Menten kinetics was produced. It was found that the enzyme insolubilisation process using a chemical cross-linking agent did not affect the process of galacto-oligosaccharide formation. Centrifugation experiments were performed and it was found that by varying the applied centrifugal fields that the yield of galacto-oligosaccharides could be controlled. The higher the applied centrifugal fields the lower the yield of galacto-oligosaccharides. By increasing the applied centrifugal fields the 'contact time' between the sedimenting enzyme and the substrate was reduced, which produced lower yields. A novel technique involving pulsing the insolubilised enzyme through the substrate gradient was developed and this was found to produce higher yields of galacto-oligosaccharide compared to using a single enzyme loading equivalent to the total combined activity of the pulses. Comparison of the galacto-oligosaccharide yields between stirred-batch and centrifugation reactions showed that the applied centrifugal fields did not adversely affect the transgalactosyl activity of the insolubilised enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamic properties of anchovy fillets and enzymatic modified pastes in two hydrolysis degrees (3% HD and 14% HD), at 50, 60 and 70 C were evaluated. The GAB model was used to calculate the values of the monolayer moisture content and the thermodynamic properties of the samples. The enzymatic modification led to the increases of the superficial area and differential enthalpies, and decrease of the differential entropies in relation the samples in natura. The enthalpy–entropy compensation showed that the process was controlled by the enthalpy, it was only spontaneous for the samples in natura. Pore size decreased with enzymatic modification, and all samples were in the limit of region between micropores and mesopores (<2 nm) for moisture content of 15%, and mesopores (from 2 to 50 nm) to moisture content above 15%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolving-grade pulps are commonly used for the production of cellulose derivatives and regenerated cellulose. High cellulose content, low content of non-cellulosic material, high brightness, a uniform molecular weight distribution and high cellulose reactivity are the key features that determine the quality of a dissolving pulp. The first part of this work was an optimization study regarding the application of selected enzymes in different stages of a new purification process recently developed in Novozymes for purifying an eucalypt Kraft pulp into dissolving pulp, as an alternative to the pre-hydrolysis kraft (PHK) process. In addition, a viscosity reduction was achieved by cellulase (endoglucanase) treatment in the beginning of the sequence, while the GH11 and GH10 xylanases contributed to boost the brightness of the final pulp. The second part of the work aimed at exploring different auxiliary enzyme activities together with a key xylanase towards further removal of recalcitrant hemicelluloses from a partially bleached Eucalypt Kraft pulp. The resistant fraction (ca. 6% xylan in pulp) was not hydrolysable by the different combinations of enzymes tested. Production of a dissolving pulp was successful when using a cold caustic extraction (CCE) stage in the end of the sequence O-X-DHCE-X-HCE-D-CCE. The application of enzymes improved process efficiency. The main requirements for the production of a dissolving pulp (suitable for viscose making) were fulfilled: 2,7% residual xylan, 92,4% of brightness, a viscosity within the values of a commercial dissolving pulp and increased reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature was reviewed and analyzed to determine the feasibility of using a combination of acid hydrolysis and CO2-C release during long-term incubation to determine soil organic carbon (SOC) pool sizes and mean residence times (MRTs). Analysis of 1100 data points showed the SOC remaining after hydrolysis with 6 M HCI ranged from 30 to 80% of the total SOC depending on soil type, depth, texture, and management. Nonhydrolyzable carbon (NHC) in conventional till soils represented 48% of SOC; no-till averaged 56%, forest 55%, and grassland 56%. Carbon dates showed an average of 1200 yr greater MRT for the NHC fraction than total SOC. Longterm incubation, involving measurement of CO2 evolution and curve fitting, measured active and slow pools. Active-pool C comprised 2 to 8% of the SOC with MRTs of days to months; the slow pool comprised 45 to 65% of the SOC and had MRTs of 10 to 80 yr. Comparison of field C-14 and (13) C data with hydrolysis-incubation data showed a high correlation between independent techniques across soil types and experiments. There were large differences in MRTs depending on the length of the experiment. Insertion of hydrolysis-incubation derived estimates of active (C-a), slow (C-s), and resistant Pools (C-r) into the DAYCENT model provided estimates of daily field CO2 evolution rates. These were well correlated with field CO2 measurements. Although not without some interpretation problems, acid hydrolysis-laboratory incubation is useful for determining SOC pools and fluxes especially when used in combination with associated measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of layered double hydroxides (LDHs) based composites were synthesized by using induced hydrolysis silylation method (IHS), surfactant precursor method, in-situ coprecipitation method, and direct silylation method. Their structures, morphologies, bonding modes and thermal stabilities can be readily adjusted by changing the parameters during preparation and drying processing of the LDHs. The characterization results show that the direct silylation reaction cannot occur between the dried LDHs and 3-aminopropyltriethoxysilane (APS) in an ethanol medium. However, the condensation reaction can proceed with heating process between adsorbed APS and LDHs plates. While using wet state substrates with and without surfactant and ethanol as the solvent, the silylation process can be induced by hydrolysis of APS on the surface of LDHs plates. Surfactants improve the hydrophobicity of the LDHs during the process of nucleation and crystallization, resulting in fluffy shaped crystals; meanwhile, they occupy the surface –OH positions and leave less “free –OH” available for the silylation reaction, favoring formation of silylated products with a higher population in the hydrolyzed bidentate (T2) and tridentate (T3) bonding forms. These bonding characteristics lead to spherical aggregates and tightly bonded particles. All silylated products show higher thermal stability than those of pristine LDHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignocellulosic materials including agricultural, municipal and forestry residues, and dedicated bioenergy crops offer significant potential as a renewable feedstock for the production of fuels and chemicals. These products can be chemically or functionally equivalent to existing products that are produced from fossil-based feedstocks. To unlock the potential of lignocellulosic materials, it is necessary to pretreat or fractionate the biomass to make it amenable to downstream processing. This chapter explores current and developing technologies for the pretreatment and fractionation of lignocellulosic biomass for the production of chemicals and fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general chemo-enzymatic process has been developed to prepare enantiomerically pure L- and D-amino acids in high yield by deracemisation of racemic starting materials. The method has been developed from initial academic studies to be a robust, scalable industrial process. Unnatural amino acids, in high optical purity, are a rapidly growing class of intermediates required for pharmaceuticals, agrochemicals and other fine chemical applications. However, no single method has proven sufficiently adaptable to prepare these compounds generally at large scale. Our approach uses an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of > 99 % from a starting racemate, and product yields over 90 %. The current approach compares very favourably to resolution methods which have a maximum single pass yield of 50 %. Efficient methods have been developed to adapt the biocatalyst used in this process towards new target compounds and to optimise key factors which improve the process efficiency and offer competitive economics at scale.