964 resultados para drivers scheduling problem
Resumo:
Esta dissertação apresenta um estudo sobre os problemas de sequenciamento de tarefas de produção do tipo job shop scheduling. Os problemas de sequenciamento de tarefas de produção pretendem encontrar a melhor sequência para o processamento de uma lista de tarefas, o instante de início e término de cada tarefa e a afetação de máquinas para as tarefas. Entre estes, encontram-se os problemas com máquinas paralelas, os problemas job shop e flow shop. As medidas de desempenho mais comuns são o makespan (instante de término da execução de todas as tarefas), o tempo de fluxo total, a soma dos atrasos (tardiness), o atraso máximo, o número de tarefas que são completadas após a data limite, entre outros. Num problema do tipo job shop, as tarefas (jobs) consistem num conjunto de operações que têm de ser executadas numa máquina pré-determinada, obedecendo a um determinado sequenciamento com tempos pré-definidos. Estes ambientes permitem diferentes cenários de sequenciamento das tarefas. Normalmente, não são permitidas interrupções no processamento das tarefas (preemption) e pode ainda ser necessário considerar tempos de preparação dependentes da sequência (sequence dependent setup times) ou atribuir pesos (prioridades) diferentes em função da importância da tarefa ou do cliente. Pretende-se o estudo dos modelos matemáticos existentes para várias variantes dos problemas de sequenciamento de tarefas do tipo job shop e a comparação dos resultados das diversas medidas de desempenho da produção. Este trabalho contribui para demonstrar a importância que um bom sequenciamento da produção pode ter na sua eficiência e consequente impacto financeiro.
Resumo:
Double Degree
Resumo:
Tese de Doutoramento em Engenharia Industrial e de Sistemas.
Resumo:
This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.
Resumo:
Business processes designers take into account the resources that the processes would need, but, due to the variable cost of certain parameters (like energy) or other circumstances, this scheduling must be done when business process enactment. In this report we formalize the energy aware resource cost, including time and usage dependent rates. We also present a constraint programming approach and an auction-based approach to solve the mentioned problem including a comparison of them and a comparison of the proposed algorithms for solving them
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.
Resumo:
We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.
Resumo:
We present some results attained with different algorithms for the Fm|block|Cmax problem using as experimental data the well-known Taillard instances.
Resumo:
This report describes a new approach to the problem of scheduling highway construction type projects. The technique can accurately model linear activities and identify the controlling activity path on a linear schedule. Current scheduling practices are unable to accomplish these two tasks with any accuracy for linear activities, leaving planners and manager suspicious of the information they provide. Basic linear scheduling is not a new technique, and many attempts have been made to apply it to various types of work in the past. However, the technique has never been widely used because of the lack of an analytical approach to activity relationships and development of an analytical approach to determining controlling activities. The Linear Scheduling Model (LSM) developed in this report, completes the linear scheduling technique by adding to linear scheduling all of the analytical capabilities, including computer applications, present in CPM scheduling today. The LSM has tremendous potential, and will likely have a significant impact on the way linear construction is scheduled in the future.
Resumo:
In this work, we present an integral scheduling system for non-dedicated clusters, termed CISNE-P, which ensures the performance required by the local applications, while simultaneously allocating cluster resources to parallel jobs. Our approach solves the problem efficiently by using a social contract technique. This kind of technique is based on reserving computational resources, preserving a predetermined response time to local users. CISNE-P is a middleware which includes both a previously developed space-sharing job scheduler and a dynamic coscheduling system, a time sharing scheduling component. The experimentation performed in a Linux cluster shows that these two scheduler components are complementary and a good coordination improves global performance significantly. We also compare two different CISNE-P implementations: one developed inside the kernel, and the other entirely implemented in the user space.
Resumo:
Analyzing the state of the art in a given field in order to tackle a new problem is always a mandatory task. Literature provides surveys based on summaries of previous studies, which are often based on theoretical descriptions of the methods. An engineer, however, requires some evidence from experimental evaluations in order to make the appropriate decision when selecting a technique for a problem. This is what we have done in this paper: experimentally analyzed a set of representative state-of-the-art techniques in the problem we are dealing with, namely, the road passenger transportation problem. This is an optimization problem in which drivers should be assigned to transport services, fulfilling some constraints and minimizing some function cost. The experimental results have provided us with good knowledge of the properties of several methods, such as modeling expressiveness, anytime behavior, computational time, memory requirements, parameters, and free downloadable tools. Based on our experience, we are able to choose a technique to solve our problem. We hope that this analysis is also helpful for other engineers facing a similar problem
Resumo:
The maintenance of electric distribution network is a topical question for distribution system operators because of increasing significance of failure costs. In this dissertation the maintenance practices of the distribution system operators are analyzed and a theory for scheduling maintenance activities and reinvestment of distribution components is created. The scheduling is based on the deterioration of components and the increasing failure rates due to aging. The dynamic programming algorithm is used as a solving method to maintenance problem which is caused by the increasing failure rates of the network. The other impacts of network maintenance like environmental and regulation reasons are not included to the scope of this thesis. Further the tree trimming of the corridors and the major disturbance of the network are not included to the problem optimized in this thesis. For optimizing, four dynamic programming models are presented and the models are tested. Programming is made in VBA-language to the computer. For testing two different kinds of test networks are used. Because electric distribution system operators want to operate with bigger component groups, optimal timing for component groups is also analyzed. A maintenance software package is created to apply the presented theories in practice. An overview of the program is presented.
Resumo:
Operational excellence of individual tramp shipping companies is important in today’s market, where competition is intense, freight revenues are modest and capital costs high due to global financial crisis, and tighter regulatory framework is generating additional costs and challenges to the industry. This thesis concentrates on tramp shipping, where a tramp operator in a form of an individual case company, specialized in short-sea shipping activities in the Baltic Sea region, is searching ways to map their current fleet operations and better understand potential ways to improve the overall routing and scheduling decisions. The research problem is related to tramp fleet planning where several cargoes are carried on board at the same time, which are here systematically referred to as part cargoes. The purpose is to determine the pivotal dimensions and characteristics of these part cargo operations in tramp shipping, and offer both the individual case company and wider research community better understanding of potential risks and benefits related to utilization of part cargo operations. A mixed method research approach is utilized in this research, as the objectives are related to complex, real-life business practices in the field of supply chain management and more specifically, maritime logistics. A quantitative analysis of different voyage scenarios is executed, including alternative voyage legs with varying cost structure and customer involvement. An on-line-based questionnaire designed and prepared by case company’s decision group again provides desired data of predominant attitudes and views of most important industrial customers regarding the part cargo-related operations and potential future utilization of this business model. The results gained from these quantitative methods are complied with qualitative data collection tools, along with suitable secondary data sources. Based on results and logical analysis of different data sources, a framework for characterizing the different aspects of part cargo operations is developed, utilizing both existing research and empirical investigation of the phenomenon. As conclusions, part cargoes have the ability to be part of viable fleet operations, and even increase flexibility among the fleet to a certain extent. Naturally, several hinderers for this development is recognized as well, such as potential issues with information gathering and sharing, inefficient port activities, and increased transit times.