921 resultados para dimension
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value
Resumo:
In this work we present a generalization of an exact sequence of normal bordism groups given in a paper by H. A. Salomonsen (Math. Scand. 32 (1973), 87-111). This is applied to prove that if h : M-n --> Xn+k, 5 less than or equal to n < 2k, is a continuous map between two manifolds and g : M-n --> BO is the classifying map of the stable normal bundle of h such that (h, g)(*) : H-i (M, Z(2)) --> H-i (X x BO, Z(2)) is an isomorphism for i < n - k and an epimorphism for i = n - k, then h bordant to an immersion implies that h is homotopic to an immersion. The second remark complements the result of C. Biasi, D. L. Goncalves and A. K. M. Libardi (Topology Applic. 116 (2001), 293-303) and it concerns conditions for which there exist immersions in the metastable dimension range. Some applications and examples for the main results are also given.
Resumo:
We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length. We study density profile and collective excitations of the atomic bright soliton showing that they depend on the bosonic regime involved: mean-field or Tonks-Girardeau.
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
This paper presents the principal results of a detailed study about the use of the Meaningful Fractal Fuzzy Dimension measure in the problem in determining adequately the topological dimension of output space of a Self-Organizing Map. This fractal measure is conceived by combining the Fractals Theory and Fuzzy Approximate Reasoning. In this work this measure was applied on the dataset in order to obtain a priori knowledge, which is used to support the decision making about the SOM output space design. Several maps were designed with this approach and their evaluations are discussed here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The estimation of the number of people in an area under surveillance is very important for the problem of crowd monitoring. When an area reaches an occupation level greater than the projected one, people's safety can be in danger. This paper describes a new technique for crowd density estimation based on Minkowski fractal dimension. Fractal dimension has been widely used to characterize data texture in a large number of physical and biological sciences. The results of our experiments show that fractal dimension can also be used to characterize levels of people congestion in images of crowds. The proposed technique is compared with a statistical and a spectral technique, in a test study of nearly 300 images of a specific area of the Liverpool Street Railway Station, London, UK. Results obtained in this test study are presented.
Resumo:
A self-contained discussion of non-relativistic quantum scattering is presented in the case of central potentials in one space dimension, which will facilitate the understanding of the more complex scattering theory in two and three dimensions. The present discussion illustrates in a simple way the concepts of partial-wave decomposition, phase shift, optical theorem and effective-range expansion.
Resumo:
This study investigated the effect of different microwave curing cycles on the changes in occlusal vertical dimension of complete dentures. Four test groups with 12 maxillary dentures each were evaluated. Groups 1, 2 and 3 were polymerized with different cycles by microwave radiation and Group 4 was the control and cured by water bath. The average pin opening for all groups was less than 0.5 mm. There was no significant difference between the groups polymerized by the microwave method and the control group. However, analyses of the vertical dimension changes showed statistically significant differences between groups 2 (0.276 +/- 0.141 mm) and 3 (0.496 +/- 0.220 mm).
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.