882 resultados para detrital baddeleyite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese loess preserved in northwest and north China are famous for its fine grain size, high accumulate rate and high community and can be good archives for paleoclimate and paleomagnetic variation over the later Cenozoic, with which can be correlated well between marine sediments. Major geomagnetic chrons and long term paleoclimate changes in Quaternary are successfully extracted from Chinese loess-paleosols, as well as short-term geomagnetic excursions and climate instability of high resolution. Magneticstratigraphy based on paleogeomagnetic polarity reversal recorded in Chinese loess is a basic project in loess research since decades ago. True geomagnetic records and exact location of geomagnetic reversal boundary in section is the foundation of magneticstratigraphy. Matuyama-Brunhes (MB) reversal as the youngest one still remains divarication about exact location of its boundary (MBB). L8 and S8 of Luochuan and Xifeng located in the interior of Chinese Loess Plateau(CLP) and Mangshan in southeast part of CLP are chosen to make clear some problems which include magnetic mineral, process of MB reversal, location of MBB, downward displacement scale of magnetic reversal boundary, time lag of paleoclimate record by marine and loess, new correlation between Chinese loess and marine sediments. Rock-magnetic investigations carried on L8 and S8 show that the main mineral are ferrimagnetic assemblage consists of magnetite and maghemite in Luochuan and Xifeng, and magnetite in Mangshan, which all contains little hematite belongs to antiferromagnetic phases. The main carrier of nature remanet magnetism (NRM) is detrital magnetite with pseudo-single domain. Detailed paleomagnetic investigations display that there are several rapid reversals in direction during the process of MB reversal which started at the upper part of S8 and finished at the lower part of L8, and lasted about decades of centimeters to more than 100cm correspond to about 104 years. On the assumption that MBB is located in the middle part of the layer which recorded the very reversal, 11cm is considered as the scale of downward displacement for the MBB in Chinese loess after estimation through correlation between Luochuan and Mangshan records. So this study denies the theory of large scale displacement of MBB and large scale Lock-in depth of NRM acquired from Chinese loess. Time lag of paleoclimate records in terrestrial sediments and marine sediments is considered after reassessment of correlation between low field susceptibility of Chinese loess with marine oxygen isotope in benthic foraminifera. On the basis of traditional correlation between Chinese loess and marine oxygen isotope, this study document a new scheme which correlates L8 and S8 to MIS18 and MIS19, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Huade Group, consisting of low-grade and un-metamorphosed sedimentary rocks with no volcanic interlayer, is located at the northern margin of the North China craton and adjoining the south part of the Central Asian Orogenic Belt. It is east to the Paleo- to Meso-Proterozoic Bayan Obo and Zhaertai-Langshan rifts and northwest to the Paleo- to Neo-proterozoic Yanshan aulacogen, in which the typical Changcheng, Jixian and Qingbaikou systems are developed. The Huade Group are mainly composed of pebbly sandstones, sandstones, greywackes,shales,calc-silicate rocks and limestones, partly undergoing low-grade metamorphism and being changed to meta-sandstones, schists, phyllites, slates and crystalline limestones or marbles. The stratigraphic sequences show several cycles of deposition. Each of them developed coarse clastic rocks – interbedded fine clastic rocks and pelites from bottom upward or from coarse clastic rocks to interbedded fine clastic rocks and pelites to carbonate rocks. The Tumen Group outcrop sporadically around or west to the Tanlu faults in western Shandong. They are mainly composed of pebbly sandstones, sandstones, shales and limestones. This thesis deals with the characteristics of petrology, geochemistry and sedimentary of the Huade Group and the Tumen Group, and discusses the LA-ICP-MS and SIMS U-Pb ages, Hf isotope and trace element composition of the detrital zircons from 5 meta-sandstone samples of the Huade Group and 3 sandstone samples of the Tumen Group. The age populations of the detrital zircons from the Huade Group are mainly ~2.5 Ga and ~1.85 Ga, and there are also minor peaks at ~2.0 Ga, ~1.92 Ga and ~1.73 Ga. Most of the detrital zircon grains of 2.47-2.57 Ga and a few of 1.63-2.03 Ga have Hf crust model ages of 2.7-3.0 Ga, and most of the detrital zircon grains of 1.63-2.03 Ga have Hf crust model ages of 2.35-2.7 Ga, with a peak at 2.54 Ga. The main age peaks of the detrital zircons from the Tumen Group are ~2.5 Ga、~1.85 Ga, 1.57 Ga, 1.5 Ga, 1.33 Ga and 1.2 Ga. Different samples from the Tumen Group have distinct Hf isotopic characteristics. Detrital zircon grains of ~2.52 Ga from one sandstone sample have 2.7-3.2 Ga Hf crust model ages, whereas zircon grains of 1.73-2.02 Ga and 2.31-2.68 Ga from another sample have Hf crust model ages of 2.95-3.55 Ga. Detrital zircon grains of Mesoproterozoic ages have Paleoproterozoic (1.7-2.25 Ga) crust model ages. Through detailed analyses of the detrital zircons from the Huade and Tumen Group and comparison with those from the sedimentary rocks of similar sedimentary ages, the thesis mainly reaches the following conclusions: 1. The youngest age peaks of the detrital zircons of 1.73 Ga constrains the sedimentary time of the Huade Group from late Paleoproterozoic to Mesoproterozoic. 2. The age peaks of detrital zircons of the Huade Group correspond to the significant Precambrian tectonic-thermal events of the North China craton. The basement of the North China craton is the main provenance of the Huade Group, of which the intermediate to high grade metamorphic sedimentary rocks are dominant and provide mainly 1.85-1.92 Ga sediments. 3. The Huade basin belongs to the North China craton and it is suggested that the northern boundary of the North China craton should be north to the Huade basin. 4. The stratigraphic characteristics indicate the Huade Group formed in a stable shallow-hypabyssal sedimentary basin. The rock association and sedimentary time of the Huade Group are similar to those of the Banyan Obo Group and the Zhaertai Group, and they commonly constitute late Paleoproterozoic to Mesoproterozoic continental margin basins along the northern margin of the North China craton. 5. The continental margin basins would have initiated coeval with the Yanshan and Xiong’er aulacogens. 6. The ages of the detrital zircons from the Tumen Group and the Penglai Group at Shandong peninsula and the Yushulazi Group at south Liaoning are similar, so their sedimentary time is suggested to be Neoproterozoic,coeval with the Qingbaikou system. The detrital zircon ages of 1.0-1.2 Ga from the Tumen Group, the Penglai Group and the Yushulazi Group indicate that there have being 1.0-1.2 Ga magmatic activities at the eastern margin of the North China craton. 7. The U-Pb age populations of the detrital zircons from the late Paleoproterozoic to Neoproterozoic sedimentary rocks suggest that the main Precambrian tectonic-thermal events of the North China craton happened at ~2.5 Ga and ~1.85 Ga. But the events at 2.7 Ga and 1.2 Ga are also of great significance. Hf isotope characteristics indicate that the significant crust growth periods of the North China craton are 2.7-3.0 Ga and ~2.5 Ga.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the character of sedimentation and reservoir researching as well as diagenesis, using conventional and update testing measures, classificati-on and evaluation of the tesla low permeability reservoir in Ordos Basin is pr-esented. From Chang 8 to Chang 4+5 oil formations, four facies developed, includi-ng alluvial fan facies, delta facies, lake facies as well as density current. They were controlled by the northeastern, the southwest, the southern and the northwestern provenances. Distributary channel underwater and mouth bar of delta fr-ont are the main reservoirs. Detrital component has the different character in s-outh and in north. Sedimentary system in the northeastern part has more felds-par and less quartz. Sedimentary system in the southern part has more quartz and less feldspar. Because of sedimentation and diagenesis, the oil formations in region of interest formed the different features of pore array of the tesla l-ow permeability reservoirs. After researching, it is found that the active porosity and the main throat radius of Chang 4+5 are the highest, and they are positive correlation with per-meability. The exponent of flowing interval falls in the sortorder: Chang 8, Chang 4+5, Chang 6, Chang 7. Using clustering procedure and quaternion, the reservoirs of Yanchang for-mation in Ordos Basin are divided into five types. Ⅰ-good reservoirs and Ⅱ-appreciably good reservoirs occur in distributary channel and mouth bar. Ⅲ-poor reservoirs and Ⅳ-poorer reservoirs exist in natural levee, crevasse splay under-water and turbidity fan. It is forecasted that the oil area in Ⅰ-good reservoirs is about 4336.68 square kilometers, and the oil area in Ⅱ-appreciably good reservoirs is 28013.28 square kilometers or so, and the oil area in Ⅲ-poor rese-rvoirs is 28538.05 square kilometers more or less.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South China craton was formed by the collision of the Yangtze and Cathaysia blocks during the Neoproterozoic Jiangnan orogeny (also termed as the Jingnin or Sibao orogeny in Chinese literature). Basement rocks within the Yangtze block consist mainly of Proterozoic sediments of the Lengjiaxi and Banxi Groups. U-Pb ages of detrital zircons obtained by the LA-ICP-MS dating technique imply that the deposition of the Lengjiaxi Group continued until the Neoproterozoic. The youngest detrital zircons suggest a maximum deposition age of ~830 Ma for the Lengjiaxi Group, consistent with the initiation time of the deposition of the overlying Banxi Group, likely indicating continuous deposition of these two groups and a short temporal hiatus (~10 Ma) between the Neoproterozoic sedimentary rocks distributed in the South China craton. Detrital zircons from both the Lengjiaxi and Banxi Groups have a wide range of εHf(t) values from -12 to 14.2 and a continuous Nd and Hf model age spectrum from ~820 Ma to 2200 Ma. Some grains have model ages ranging up to ca. 2.9-3.5 Ga, indicating that both juvenile mantle material and ancient crust provided sedimentary detritus. This is also consistent with the Nd isotopic signature of sedimentary rocks recorded in the Lengjiaxi Group, suggesting a back-arc tectonic setting. The Banxi Group has slightly enriched Nd isotopic signatures relative to the Lengjiaxi Group, implying a higher percentage of old continental material in the sedimentary source. Combined with previously published data, new results can help us to reconstruct the Neoproterozoic tectonic evolution of the South China craton. The age spectrum of detrital zircons and Nd-Hf isotopic composition suggests a two-stage collision: Between 1000 Ma to 870 Ma, a continental magmatic arc was build up along the eastern margin of the Yangtze block. Convergence led to continent-based back-arc extension, subsidence and formation of a back-arc basin. Detritus originating from arc-related magmatic and old basement rocks was transported into this back-arc basin resulting in formation of the Lengjiaxi Group and its equivalents. At around 870 Ma, a second (oceanic) arc was formed by extension of an inter-arc basin, subduction subsequently led to the first collision and the emplacement of the blueschist mélange. Accretion of the magmatic arc lasted until the closure of an oceanic basin between the Yangtze and Cathaysia blocks at about 830 Ma. Shortly after the collision, subsequent uplift, further extension of the former back-arc basin and post-collisional granitoid magmatism caused a tilting of the Lengjiaxi sediments. Between 830 Ma and 820 Ma, subsequent closure of the oceanic back-arc basin and formation of the Jiangnan orogen took place, leaving a regional unconformity above the Lengjiaxi Group. Above this unconformity the Banxi Group was immediately deposited during the post-tectonic stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluvio-lacustrine sequence in the Nihewan Basin is an important archive of late Pliocene-Pleistocene climate and environment changes in temperate northern China, which provides excellent sources of early human settlements in high latitude East Asia. The recent years have witnessed a considerable progress in the paleomagnetic dating of its stratigraphy, which has notably increased our understanding of a series of important issues such as the early human occupation in the Old World, the infilling history of the Nihewan Basin, and the chronological sequence of the Nihewan faunas. Up to now, the long-term paleoenvironmental changes directly retrieved from this basin, which might influence the evolution and expansion of early humans in the Nihewan Basin, are still poorly constrained, although several paleoclimatic records have been retrieved from this area. In this study, a combined mineral-magnetic and geochemical investigation was carried out on the fluvio-lacustrine sequence from the Dachangliang section at the eastern margin of the basin in order to reveal its rock magnetic and environmental magnetic characteristics and its implications for early human evolution in East Asia. The major findings and conclusions are listed as the following: First, there is an increased cooling coupled with an intensified aridification recorded in the fluvio-lacustrine sequence of the Dachangliang section. The cooling is related to an up-section decrease in propensity to chemical weathering as inferred from an increase in low-field susceptibility after cycling to 700 °C. Close to 700 °C, reacting chlorite is providing the iron source for newly formed very fine-grained ferrimagnetic minerals which enhances the susceptibility signal. The reactivity of chlorite after annealing at temperatures above 600 °C is documented with X-ray diffraction. Second, degrees of chemical weathering in the Nihewan Basin are further estimated by clay mineralogy (i.e. chlorite and illite contents and chlorite/illite ratio) and a series of major element proxies (i.e. Na2O/Al2O3 versus K2O/Al2O3 diagram, Al2O3-(CaO + Na2O)-K2O ternary diagram (A-CN-K), chemical index of alteration (CIA), (CaO + Na2O + MgO)/TiO2, (CaO + Na2O + MgO + K2O)/(TiO2 + Al2O3), CaO/Al2O3 and CaO/TiO2). The up-section decrease in propensity to chemical weathering suggested by the aforementioned rock mangetic measurement is further confirmed by these geochemical analyses. Combining the chemical weathering records from the Nihewan Basin, Chinese Loess Plateau, South China Sea and eastern China, we find that the consecutive decreasing trend in chemical weathering intensity during the late Cenozoic is ubiquitous across China. This pattern may result from a long-term decreasing East Asian summer monsoon and increasing East Asian winter monsoon, and thus a consecutive increasing of aridification and cooling in Asia during the Quaternary. Furthermore, the chemical weathering intensity increased from South China to North China during the Quaternary, in line with the decreasing East Asian summer monsoon and increasing East Asian winter monsoon and thus the gradually intensified aridification and cooling from South China to North China. Third, a combined mineral-magnetic and geochemical investigation provides evidences that the large-amplitude alterations of concentration of magnetic minerals mainly result from preservation/dissolution cycles of detrital magnetic minerals in alternately oxic and anoxic depositional environments. The preservation/dissolution model implies that the high-magnetic and low-magnetic cycles of this sedimentary sequence represent glacial and interglacial climate cycles, respectively. This contribute significnatly to our understanding of the link between climate and magnetic properties. Finally, the paleoclimatic implications of these rock magnetic and geochemical characteristics significantly increase our understanding of the general setting of early humans in high northern latitude in East Asia. We propose that the cold and dry climate may have contributed significantly to the expansion and adaptation of early humans, rather than bringing hardship, as is often thought. The relationship between magnetic properties and climate possibly provides valuable information on the climatic context of the Paleolithic sites in the basin, especially whether the occupation occurred during an interglacial or glacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tethyan Himalayan Sequence (THS) is located at the frontier of the India-Asia collision zone, which can preserve critical information about collision. This paper reports detailed petrology, geochemistry, spinels electron microprobe data, and in situ U-Pb ages and Lu-Hf isotopic data on detrital zircons from the late Cretaceous to early Eocene strata in Gyantze and Gamba area, south Tibet that provide important constraints on the early tectonic evolution of the India-Asia collision. In Gyantze, the lithic arkose in Zongzhuo mélange is characterized by, SiO2 =80.4%, Al2O3=8.6%, Na2O=1.6%, K2O=1.1%, LaN/YbN=8.90, and εNd (0) =-10.27. Spinels compositions are characterized by low TiO2 (generally <0.1%) and a Cr number mainly between 70 and 80. The largest population of detrital zircons is within the 73-169Ma range with high εHf (t) and > 500 Ma with complex εHf (t) values. The lithic arkose in Rilang conglomerate is characterized by, SiO2 =56.5%, Al2O3=15.6%, Na2O=4.7%, K2O=0.6%, LaN/YbN=5.00-5.29, and εNd (0) =1.92. Spinels of 2006T98 display high TiO2 (generally >0.2%) and a Cr number mainly between 70 and 85, other spinels are characterized by low TiO2 (generally <0.2%) and a Cr number mainly between 60 and 90. The largest population of detrital zircons is within 90-146 Ma range with high εHf (t). The lithic arkose in Jiachala formation is characterized by, SiO2 =64.6%, Al2O3=12.1%, Na2O=1.9%, K2O=1.8%, LaN/YbN=7.73-9.13, and εNd (0) =-5.52~-8.43. Spinels in the Jiachala formation have low TiO2 (generally <0.2%) and a Cr number between 39 and 88. Detrital zircons have a wide range of age distribution of 82-3165Ma with complex εHf (t). In Gamba, The quartze sandstone in Jidula formation is characterized by, SiO2=97.4%, Al2O3=0.9%, Na2O=0.03%, K2O=0.18%, LaN/YbN=18.70-21.684, and εNd (0) between -13.1~-7.4. While the lithic arkose in Zhepure formation is characterized by, SiO2=68.4%, Al2O3=7.3%, Na2O=1.15%, K2O=0.52%, LaN/YbN=6.09-8.99, and εNd(0)=-5.8~-6.3. Based on our geochemical analysis, spinles electron microprobe data, U–Pb ages and Hf isotope data for detrital zircons of the late Cretaceous-Eocene strata in Gyantze and Gamba, southern Tibet, the following major conclusions can be drawn: 1. In Gyantze, the Zongzhuo mélange was mainly derived from accretionary prism/THS of continental slop and Gangdese arc. Rilang conglomerate was totally from Gangdese arc. The Jiachala formation was derived from THS, suture zone and Gangdese arc. 2. In Gamba, the Jidula formation was from India craton, while the Zhepure formation was derived from THS, suture zone and Gangdese arc. 3. The deposite of Zongzhuo mélange and Rilang conglomerate (73-55Ma) marks the collision between India and Asia. 4. Late Paleocene-Eocene tectonic evolution is consistent with foreland basin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xuanlong-type Hematite Deposits, distributed in Xuanhua and Longguang area in Hebei province and hosted in the Changchengian Chuanlinggou Formation of Mesoproterozoic, is an oldest depositional iron deposit characterized by oolitic and stromatolitic hematite and siderite. This thesis made an systematic study of its sedimentary, sedimentology, geochemistry, mineralogy and sequence stratigraphy. Based on above, the mechanism and background of biomineralization are discussed. There are four types of hematite ores including stromatolite, algal oolite, algal pisolite and oncolite. Based on detailed study on ore texture, the authors think both algal oolite and algal pisolite ores are organic texture ores, and related to the role of microorganisms. The process of blue-green algae and bacteria in the Xuanlong basin absorbing, adsorbing and sticking iron to build up stromatolite is the formation process of Xuanlong-type hematite deposit. Researches on ore-bearing series and ore geochemistry show that the enrichment of elements is closely related to the microorganism activities. Fe_2O_3 is enriched in dark laminations of stromatolite with much organic matter and SiO_2 in light laminations with detrital matters. The trace elements, especially biogenic elements, including V, P, Mo are enriched in ores but relatively low in country rocks. The paper also demonstrates on the sequence stratigraphy of hematite deposits and five sequences and twelve systems are divided. The characteristics of sequence stratigraphy show that the deposit-forming location has obviously selectivity and always exists under a transgressive setting. The oxygen isotope in hematite is about -2.2~5.7‰, which is similar to that of Hamlys iron formation of Australia but more negative than that of volcanic or hydrothermal iron deposits characterized by high positive values. The calculation by the result of oxygen isotope analysis shows that the temperature of ancient sea water was 48.53℃. The negative value of carbon isotope from siderite indicates its biogenic carbon source. Meanwhile, the occurrence of seismite in the ore-beds, which indicates the formation of hematite deposits is associated with frequent shock caused by structural movement such as distal volcano or ocean-bottom earthquake etc, show the occurrence of hematite deposits is eventual, not gradual. In shorts, Xuanlong-type hematite deposits were the result of interaction among geological setting of semi-isolated Xuanglong basin, favorable hot and humid climate condition, abundant iron source, microorganism such as algae and bateria as well as the fluctuation of the sea level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are four chapters in this dissertation. The first chapter briefly synthesizes the basic theories, methods and present-day applying situation of environmental magnetism. The second chapter probes into the magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea and its response to marine environmental changes, using the muddy sediment of Core YSDP103 formed in the shelf since about 13 ka BP. The third chapter illustrates the high-resolution early diagenetic processes by investigating the rapidly deposited muddy sediments during the last 6 ka in Cores SSDP-102 and SSDP-103 from the near-shore shelf of Korea Strait. The fourth chapter presents the results of detailed rock magnetic investigation of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea in an attempt to provide environmental magnetic evidence for the provenance of the fine-grained deposit. Core YSDP103 was retrieved in the muddy deposit under the cold eddy of the southeastern South Yellow Sea, and the uppermost 29.79 m core represents the muddy sediments formed in the shelf since about 13 ka BP. The lower part from 29.79 to 13.35 m, called Unit A2, was deposited during the period from the post-glacial transgression to the middle Holocene (at about 6 ~(14)C ka BP) when the rising sea level reached its maximum, while the upper part above 13.35 m (called Unit Al) was deposited in a cold eddy associated with the formation of the Yellow Sea Warm Current just after the peak of post-glacial sea level rise. For the the uppermost 29.79 m core, detailed investigation of rock-magnetic properties and analyses of grain sizes and geochemistry were made. The experimental results indicate that the magnetic mineralogy of the core is dominated by magnetite, maghemite and hematite and that, except for the uppermost 2.35 m, the magnetic minerals were subject to reductive diagenesis leading to significant decline of magnetic mineral content and the proportion of low-coercivity component. More importantly, ferrimagnetic iron sulphide (greigite) is found in Unit A2 but absent in Unit Al, suggesting the control of marine environmental conditions on the magnetic mineral diagenesis. Magnetic parameters show abrupt changes across the boundary between the Unit Al and A2, which reflects a co-effect of environmental conditions and primary magnetic components of the sediments on the diagenesis. Alternating zones of high and low magnetic parameters are observed in Unit A2 of Core YSDP103, which is presumably due to periodic changes of the concentration and/or grain size of magnetic minerals carried into the study area. Cores SSDP-102 and SSDP-103, two studied sediment cores from the Korea Strait contain mud sequences (14 m and 32.62 m in thickness) that were deposited during the last 6,000 years. Analyses of grain sizes and geochemistry of the cores have demonstrated that the sediments have uniform lithology and geochemical properties, however, marked down-core changes in magnetic properties suggest that diagenesis has significantly impacted the magnetic properties. An expanded view of early diagenetic reactions that affect magnetic mineral assemblages is evident in these rapidly deposited continental shelf sediments compared to deep-sea sediments. The studied sediments can be divided into four descending intervals, based on magnetic property variations. Interval 1 is least affected by diagenesis and has the highest concentrations of detrital magnetite and hematite, and the lowest solid-phase sulfur contents. Interval 2 is characterized by the presence of paramagnetic pyrite and sharply decreasing magnetite and hematite concentrations, which suggest active reductive dissolution of detrital magnetic minerals, the absolute minimum abundance of magnetite is reached at the end of this interval. Interval 3 is marked by a progressive loss of hematite with depth, and at the base of this interval, 82% to 88% of the hematite component was depleted and the bulk magnetic mineral concentration was reduced to the lowest value in the entire studied mud section. Interval 4 has an increasing down-core enhancement of authigenic greigite, which is interpreted to have formed due to arrested pyritization resulting from consumption of pore water sulfate with depth. This is the first clear demonstration from an active depositional environment for a delay of thousands of years for acquisition of a magnetization carried by greigite. This detailed view of diagenetic processes in continental shelf sediments suggests that studies of geomagnetic field behavior from such sediments should be conducted with care. Paleoceanographic and paleoclimatic studies based on the magnetic properties of shelf sediments with high sedimentation rates like those in the Korea Strait are also unlikely to provide a meaningful signature associated with syn-depositional environmental processes. The rock magnetic properties of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea, an area surrounded by sands, are investigated with a view to providing information on the sediment provenance. Multiple magnetic parameters such as magnetic susceptibility (%), anhysteretic remanent magnetization (ARM), saturation rernanent magnetization (SIRM), coercivities of SIRM (Her), and S ratios (relative abundance of low-coercivity magnetic minerals) are measured for all 179 surface samples, and partial representative samples are examined for their magnetic hysteresis parameters, temperature-dependence of magnetic susceptibility and x-ray diffraction spectra. Our research indicates that the magnetic mineralogy is dominated by magnetite with a small amount of hematite and is primarily of pseudo-single domain (PSD) to multidomain (MD) nature with a detrital origin. In the surface sediments, the granulometry of magnetic fractions is basically independent of grain sizes of the sediment containing the magnetic grains, and the composition of magnetic minerals remains almost homogeneous, that is, with a relatively constant ratio of low to high coercivity fraction throughout the area. The magnetic concentration in the study area generally decreases to the east or southeast accompanied by magnetic-particle fining to the east or to the northeast. The geographic pattern of magnetic properties is most reasonably explained by a major source of sediment jointly from the erosion of the old Huanghe River deposit and the discharge of the Changjiang River. The rock magnetic data facilitate understanding of the transport mechanism of fine-grained sediments in the outer shelf of the East China Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Western China is regarded as an assemblage of blocks or microplates. The India/Asia postcollisional kinematics of these blocks has attracted many geologists to pay attentions, especially on the geodynamics and intracontinental deformation of Tibetan and adjoining parts of central Asia. So far there are still many debates on the amount of continental shortening and extrusion within Western China blocks. Paleomagnetism plays a very important role in the paleogeographic reconstruction and depiction of kinematics of the blocks, however the unequilibrium of paleomagentic data obtained from Western China prevents paleomagnetists from studying the kinematics and intracontinental deformation on the Tibetan plateau and the central Asia. Moreover, shallower inclinations observed in the Cretaceous and Cenozoic terrestrial red sediments in central Asia makes it difficult to precisely estimate the northward convergence of Tibetan plateau and its adjacent areas since the onset of the Indian/Asian collision. In this thesis, detailed rock magnetic, chronological and paleomagnetic studies have been carried out on the Tuoyun Basin in the southwestern Tianshan to discuss the possible continental shortening and tectonic movements since the Cretaceous-Tertiary. Ar-Ar geochronological study has been conducted on the upper and lower basalt series from the Tuoyun Basin, yielding that the lower and upper basalt series were extruded during 115-113 Ma and 61.8-56.9 Ma, respectively. Both the age spectrum and inverse isochron show that the samples from the upper and lower basalt series have experienced no significant thermal events since extrusion of the baslts. Rock magnetic studies including temperature dependence of magnetization and susceptibility during a heating-cooling cycle from temperature up to 600 ℃ suggest that the baslt samples from the lower and upper basalt series are ferromagnetically predominant of magnetite and a subordinate hematite with a few sites of titanomagnetite. The predominant magnetic mineral of the intercalated red beds is magnetite and hematite. Anisotropy of magnetic susceptibility shows that both the baslts and the intercalated red beds are unlikely to have undergone significant strain due to compaction or tectonic stress since formation of the rocks. The stable characteristic remanent magnetization (ChRM) isolated from the most samples of the upper and lower basalt series and intercalated red beds, passes fold test at the 99% confidence level. Together with the geochronological results, we interpret the characteristic component as a primary magnetization acquired in the formation of rocks. Some sites from both the upper and lower basalts yielded shallower inclinations than the reference field computed from the Eurasia APW, we prefer to argue that these shallow inclinations might be related to geomagnetic secular variation, whereas the shallow inclination in the intercalated red beds is likely to be related to detrital remanent magnetization. Paleomagnetic results from the early Cretaceous-Paleogene basalts indicate that no significant N-S convergence has taken place between the Tuoyun Basin and the south margin of Siberia. Furthermore, the Cretaceous and Tertiary paleomagnetic results suggest that the Tuoyun Basin was subjected to a local clockwise rotation of 20°-30° with respect to Eurasia since the Paleocene time, which is probably subsequent to the Cenozoic northward compression of the Pamir arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus-guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently the deep sea was considered to be a particularly stable environment1, free from seasonal variations. However, atmospheric storms may cause periodicity in deep-ocean currents2 and nepheloid layers3 while seasonality in the particulate flux to the deep sea is known to occur in the Sargasso Sea4,5 and Panama Basin6. Evidence is presented here of a similar seasonal pulse of detrital material to bathyal and abyssal depths in temperate latitudes; this material seems to be derived directly from the surface primary production and to sink rapidly to the deep-sea benthos. Considerable sedimentation occurs soon after the spring bloom and continues throughout the early summer. This process acts as a pathway for the descent of carbon from the euphotic zone, providing a periodic food source for the deep pelagic and benthic communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zooplankton play a key role in climate change through the transfer of large quantities of CO sub(2) to the deep ocean by a process known as the biological pump. Plankton composition is crucial as associated mineral material facilitates sinking of carbon rich debris and some taxa package faecal and detrital material. Ocean acidification may impact calcareous groups. Zooplankton have also been shown to be highly sensitive indicators of environmental change. Results will be presented to show that ocean temperature, circulation and planktonic ecosystems (using data from the Continuous Plankton Recorder, CPR survey) in the North Atlantic are changing rapidly in concert and that there is evidence to suggest that the changes are an ocean wide response to global warming with potential feedback effects. Given the importance of the oceans to the carbon cycle, even a minor change in the flux of carbon to the deep ocean would have a big impact increasing growth of atmospheric CO sub(2). We have virtually no understanding of the spatial and temporal variability in the efficiency of the biological pump for most of the world's ocean. Establishing new plankton monitoring programmes backed up by appropriate research to help understand processes is needed to address this gap in knowledge. There is little doubt within a global change context and the future of mankind that a potential acceleration in the growth of atmospheric carbon due to a reduction in the efficiency of the biological pump is a key issue for future research in zooplankton ecology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Cretaceous meandering and braided fluvial sandstones of the Nubian Formation form some of the most important subsurface reservoir rocks in the Sirt Basin, north-central Libya. Mineralogical, petrographical and geochemical analyses of sandstone samples from well BB6-59, Sarir oilfield, indicate that the meandering fluvial sandstones are fine- to very fine-grained subarkosic arenites (av. Q91F5L4), and that braided fluvial sandstones are medium- to very coarse-grained quartz arenites (av. Q96F3L1). The reservoir qualities of these sandstones were modified during both eodiagenesis (ca. <70oC; <2 km) and mesodiagenesis (ca. >70oC; >2km). Reservoir quality evolution was controlled primarily by the dissolution and kaolinitization of feldspars, micas and mud intraclasts during eodiagenesis, and by the amount and thicknessof grain-coating clays, chemical compaction and quartz overgrowths during mesodiagenesis. However, dissolution and kaolinitization of feldspars, micas and mud intraclasts resulted in the creation of intercrystalline micro- and mouldic macro-porosity and permeability during eodiagenesis, which were more widespread in braided fluvial than in meandering fluvial sandstones. This was because of the greater depositional porosity and permeability in the braided fluvial sandstones which enhanced percolation of meteoric waters. The development of only limited quartz overgrowths in the braided fluvial sandstones, in which quartz grains are coated by thick illite layers, retained high porosity and permeability (12-23 % and 30- 600 mD). By contrast, meandering fluvial sandstones underwent porosity loss as a result of quartz overgrowth development on quartz grains which lack or have thin and incomplete grain-coating illite (2-15 % and 0-0.1mD). Further loss of porosity in the meandering fluvial sandstones occurred as a result of chemical compaction (pressuredissolution) induced by the occurrence of micas along grains contacts. Otherdiagenetic alterations, such as the growth of pyrite, siderite, dolomite/ankerite and albitization, had little impact on reservoir quality. The albitization of feldspars may have had minor positive influence on reservoir quality throughthe creation of intercrystalline micro-porosity between albite crystals.The results of this study show that diagenetic modifications of the braided and meandering fluvial sandstones in the Nubian Formation, and resulting changes in reservoir quality, are closely linked to depositional porosity and permeability. They are also linked to the thickness of grain-coating infiltrated clays, and to variations in detrital composition, particularly the amounts of mud intraclasts, feldspars and mica grains as well as climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The use of ∆14C in conjunction with stepped combustion allows the quantification of the pathways of terrestrial carbon in the system, which has implications for regional and global carbon burial.
1McGeehin, J., Burr, G.S., Jull, A.J.T., Reines, D., Gosse, J., Davis, P.T., Muhs, D., and Southon, J.R., 2001, Stepped-combustion C-14 dating of sediment: A comparison with established techniques: Radiocarbon, v. 43, p. 255-261.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submerged reefs are important recorders of palaeo-environments and sea-level change, and provide a substrate for modern mesophotic (deep-water, light-dependent) coral communities. Mesophotic reefs are rarely, if ever, described from the fossil record and nothing is known of their long-term record on Great Barrier Reef (GBR). Sedimentological and palaeo-ecological analyses coupled with 67 14C AMS and U–Th radiometric dates from dredged coral, algae and bryozoan specimens, recovered from depths of 45 to 130 m, reveal two distinct generations of fossil mesophotic coral community development on the submerged shelf edge reefs of the GBR. They occurred from 13 to 10 ka and 8 ka to present. We identified eleven sedimentary facies representing both autochthonous (in situ) and allochthonous (detrital) genesis, and their palaeo-environmental settings have been interpreted based on their sedimentological characteristics, biological assemblages, and the distribution of similar modern biota within the dredges. Facies on the shelf edge represent deep sedimentary environments, primarily forereef slope and open platform settings in palaeo-water depths of 45–95 m. Two coral–algal assemblages and one non-coral encruster assemblage were identified: 1) Massive and tabular corals including Porites, Montipora and faviids associated with Lithophylloids and minor Mastophoroids, 2) platy and encrusting corals including Porites, Montipora and Pachyseris associated with melobesioids and Sporolithon, and 3) Melobesiods and Sporolithon with acervulinids (foraminifera) and bryozoans. Based on their modern occurrence on the GBR and Coral Sea and modern specimens collected in dredges, these are interpreted as representing palaeo-water depths of < 60 m, < 80–100 m and > 100 m respectively. The first mesophotic generation developed at modern depths of 85–130 m from 13 to 10.2 ka and exhibit a deepening succession of < 60 to > 100 m palaeo-water depth through time. The second generation developed at depths of 45–70 m on the shelf edge from 7.8 ka to present and exhibit stable environmental conditions through time. The apparent hiatus that interrupted the mesophotic coral communities coincided with the timing of modern reef initiation on the GBR as well as a wide-spread flux of siliciclastic sediments from the shelf to the basin. For the first time we have observed the response of mesophotic reef communities to millennial scale environmental perturbations, within the context of global sea-level rise and environmental changes.