814 resultados para decision support techniques
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.
Resumo:
In today’s financial markets characterized by constantly changing tax laws and increasingly complex transactions, the demand for family financial planning (FFP) services is rising dramatically. However, the current trend to develop advisory systems that focus mainly on the financial or investment side fails to consider the whole picture of FFP. Separating financial or investment advice from legal and accounting advice may result in conflicting advice or important omissions that could lead to users suffering financial loss. In this paper, we propose a conceptual model for FFP decision-making process, followed by a novel architecture to support an aggregated FFP decision process by utilizing intelligentagents and Web-services technology. A prototype system for supporting FFP decision is presented to demonstrate the advances of the proposed Web-service multi-agentsbased system architecture and business value.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.