987 resultados para dark energy experiments
Resumo:
This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.
Resumo:
The highest energy cosmic ray event reported by the Auger Observatory has an energy of 148 EeV. It does not correlate with any nearby (z<0.024) object capable of originating such a high energy event. Intrigued by the fact that the highest energy event ever recorded (by the Fly`s Eye collaboration) points to a faraway quasar with very high radio luminosity and large Faraday rotation measurement, we have searched for a similar source for the Auger event. We find that the Auger highest energy event points to a quasar with similar characteristics to the one correlated to the Fly`s Eye event. We also find the same kind of correlation for one of the highest energy AGASA events. We conclude that so far these types of quasars are the best source candidates for both Auger and Fly`s Eye highest energy events. We discuss a few exotic candidates that could reach us from gigaparsec distances.
Resumo:
Recent experiments have shown that the multimode approach for describing the fission process is compatible with the observed results. Asystematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In this work, a new methodology is introduced for studying fragment mass distributions through the multimode approach. It is shown that for fission induced by energetic probes (E > 30 MeV) the mass distribution of the fissioning nuclei produced during the intranuclear cascade and evaporation processes must be considered in order to have a realistic description of the fission process. The method is applied to study (208)Pb, (238)U, (239)Np and (241)Am fission induced by protons or photons.
Resumo:
The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Metho ds Res. A505, 377 (2003)) and later the University of Sao Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamb er. Many experiments with radioactive light particle beams (RNB) such as (6)He, (7)Be, (8)Li, (8)B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.
Resumo:
We have studied the magnetic and power absorption properties of a series of magnetic nanoparticles (MNPs) of Fe(3)O(4) with average sizes < d > ranging from 3 to 26 rim. Heating experiments as a function of particle size revealed a strong increase in the specific power absorption (SPA) values for particles with < d > = 25-30 mn. On the other side saturation magnetization M(s) values of these MNPs remain essentially constant for particles with < d > above 10 rim, suggesting that the absorption mechanism is not determined by Ms. The largest SPA value obtained was 130 W/g, corresponding to a bimodal particle distribution with average size values of 17 and 26 nm.
Resumo:
The evolution of the energy states of the phosphorous donor in silicon with magnetic field has been the subject of previous experimental and theoretical studies to fields of 10 T. We now present experimental optical absorption data to 18 T in combination with theoretical data to the same field. We observe features that are not revealed in the earlier work, including additional interactions and anti-crossings between the different final states. For example, according to the theory, for the ""1s -> 2p (+)"" transition, there are anti-crossings at about 5, 10, 14, 16, and 18 T. In the experiments, we resolve at least the 5, 10, and 14 T anti-crossings, and our data at 16 and 18 T are consistent with the calculations.
Resumo:
The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E(th) = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E(th) are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E(th)/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E(th) are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
Resumo:
Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.
Resumo:
A free-running, temperature stabilized diode laser has been injection-locked to an external cavity diode laser for use in cold Rydberg atom experiments. Cold rubidium atoms in a magneto-optical trap (MOT) are excited to Rydberg states using a 10 ns laser pulse. The Rydberg atoms spontaneously ionize due to dipole forces, and the collisional ionization dynamics are observed as a function of atom density and principal quantum number of the Rydberg state, n. The injection-locked diode laser will be used as a repumper in conjunction with a dark spontaneous-force optical trap (SPOT) to increase the Rydberg state density. We report on the design of the injection-locked laser system.
Resumo:
1. The objective of this study was to determine a metabolisable energy ( ME) requirement model for broiler breeder hens. The influence of temperature on ME requirements for maintenance was determined in experiments conducted in three environmental rooms with temperatures kept constant at 13, 21 and 30 degrees C using a comparative slaughter technique. The energy requirements for weight gain were determined based upon body energy content and efficiency of energy utilisation for weight gain. The energy requirements for egg production were determined on the basis of egg energy content and efficiency of energy deposition in the eggs.2. The following model was developed using these results: ME = kgW(0.75)(806.53 - 26.45T + 0.50T(2)) + 31.90G + 10.04EM, where kgW(0.75) is body weight (kg) raised to the power 0.75, T is temperature (degrees C), G is weight gain (g) and EM is egg mass (g).3. A feeding trial was conducted using 400 Hubbard Hi-Yield broiler breeder hens and 40 Peterson males from 31 to 46 weeks of age in order to compare use of the model with a recommended feeding programme for this strain of bird. The application of the model in breeder hens provided good productive and reproductive performance and better results in feed and energy conversion than in hens fed according to strain recommendation. In conclusion, the model evaluated predicted an ME intake which matched breeder hens' requirements.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: the failure of osseointegration in oral rehabilitation has gained importance in current literature and in clinical practice. The integration of titanium dental implants in alveolar bone has been partly ascribed to the biocompatibility of the implant surface oxide layer. The aim of this investigation was to analyze the surface topography and composition of failed titanium dental implants in order to determine possible causes of failure.Methods: Twenty-one commercially pure titanium (cpTi) implants were retrieved from 16 patients (mean age of 50.33 +/- 11.81 years). Fourteen implants were retrieved before loading (early failures), six after loading (late failures), and one because of mandibular canal damage. The failure criterion was lack of osseointegration characterized as dental implant mobility. Two unused implants were used as a control group. All implant surfaces were examined by scanning electron microscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) to element analysis. Evaluations were performed on several locations of the same implant.Results: SEM showed that the surface of all retrieved implants consisted of different degrees of organic residues, appearing mainly as dark stains. The surface topography presented as grooves and ridges along the machined surface similar to control group. Overall, foreign elements such as carbon, oxygen, sodium, calcium, silicon, and aluminum were detected in failed implants. The implants from control group presented no macroscopic contamination and clear signs of titanium.Conclusion: These preliminary results do not suggest any material-related cause for implant failures, although different element composition was assessed between failed implants and control implants.
Resumo:
In amphibians solar basking far from water sources is relatively uncommon since the highly permeable amphibian skin does not represent a significant barrier to the accompanying risk of losing water by evaporation. A South American frog, Bokermannohyla alvarengai (Bokermann 1956), however, spends a significant amount of the day exposed to full sun and relatively high temperatures. The means by which this frog copes with potentially high rates of evaporative water loss and high body temperatures are unknown. Thus, in this study, skin colour changes, body surface temperature, and evaporative water loss rates were examined under a mixture of field and laboratory conditions to ascertain whether changes in skin reflectivity play an important role in this animal's thermal and hydric balance. Field data demonstrated a tight correlation between the lightness of skin colour and frog temperature, with lighter frogs being captured possessing higher body temperatures. Laboratory experiments supported this relationship, revealing that frogs kept in the dark or at lower temperatures (20 degrees C) had darker skin colours, whereas frogs kept in the light or higher temperatures (30 degrees C) had skin colours of a lighter hue. Light exhibited a stronger influence on skin colour than temperature alone, suggesting that colour change is triggered by the increase in incident solar energy and in anticipation of changes in body temperature. This conclusion is corroborated by the observation that cold, darkly coloured frogs placed in the sun rapidly became lighter in colour during the initial warming up period (over the first 5 min), after which they warmed up more slowly and underwent a further, albeit slower, lightening of skin colour. Surprisingly, despite its natural disposition to bask in the sun, this species does not possess a 'waterproof' skin, since its rates of evaporative water loss were not dissimilar from many hylid species that live in arboreal or semi-aquatic environments. The natural history of B. alvarengai is largely unknown and, therefore, it is likely that the herein reported colour change and basking behaviour represent a complex interaction between thermoregulation and water balance with other ecologically relevant functions, such as crypsis.
Resumo:
We perform a three-body calculation of direct muon-transfer rates from thermalized muonic hydrogen isotopes to bare nuclei Ne10+, S16+ and Ar18+ employing integro-differential Faddeev-Hahn-type equations in configuration space with a two-state close-coupling approximation scheme. All Coulomb potentials including the strong final-state Coulomb repulsion are treated exactly. A long-range polarization potential is included in the elastic channel to take into account the high polarizability of the muonic hydrogen. The transfer rates so-calculated are in good agreement with recent experiments. We find that the muon is captured predominantly in the n = 6, 9 and 10 states of muonic Ne10+, S16+ and Ar18+, respectively.
Resumo:
We present a general formalism for extracting information on the fundamental parameters associated with neutrino masses and mixings from two or more long baseline neutrino oscillation experiments. This formalism is then applied to the current most likely experiments using neutrino beams from the Japan Hadron Facility (JHF) and Fermilab's NuMI beamline. Different combinations of muon neutrino or muon anti-neutrino running are considered. The type of neutrino mass hierarchy is extracted using the effects of matter on neutrino propogation. Contrary to naive expectation, we find that both beams using neutrinos is more suitable for determining the hierarchy provided that the neutrino energy divided by baseline (E/L) for NuMI is smaller than or equal to that of JHF, whereas to determine the small mixing angle, theta(13), and the CP or T violating phase delta, one neutrino and the other anti-neutrino are most suitable. We make extensive use of bi-probability diagrams for both understanding and extracting the physics involved in such comparisons.