1000 resultados para d18O
Resumo:
D18O values of nine tropical-subtropical planktonic foraminiferal species with different preferential habitat depths collected from 62 core-top samples along an east-west transect across the tropical Atlantic/Caribbean were used to test the applicability of interspecific d18O gradients for reconstructions of tropical upper ocean stratification. In general, the d18O difference (Delta d18O) between intermediate- and shallow-dwelling species decreases, and Delta d18O between deep and intermediate dwellers increases with increasing thermocline depth towards the west. The statistical significance of regional differences in Delta d18O highlights Delta d18O between the intermediate dwellers (in particular Globorotalia scitula and Globorotalia tumida) and the shallow dweller Globigerinoides ruber pink, as well as Delta d18O between the deep dwellers Globorotalia crassaformis or Globorotalia truncatulinoides dextral and intermediate dwellers as most sensitive to changes in tropical Atlantic thermocline depth. Based on the observed regional variations in interspecific Delta d18O, we propose a multispecies stratification index "STRAtrop" = (d18Ointermediate - d18Oshallow) / (d18Odeep - d18Oshallow) for the tropical ocean. Statistically significant differences in STRAtrop values between the E-Atlantic and the Caribbean suggest that this index may be a useful tool to monitor variations in tropical upper ocean stratification in the geological record.
Resumo:
The first experimentally determined temperature dependent oxygen-18 fractionation factor between dolomite and water at low temperatures [Vasconcelos et al. 1995 doi:10.1130/G20992.1] allows now the precise calculation of temperatures during early diagenetic dolomite precipitation. We use d18O values of early diagenetic dolomite beds sampled during ODP Legs 112 and 201 on the Peru continental margin (Sites 1227, 1228 and 1229) [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x] to calculate paleo-porewater temperatures at the time of dolomite precipitation. We assumed unaltered seawater d18O values in the porewater, which is supported by d18O values of the modern porewater presented in this study. The dolomite layers in the Pleistocene part of the sedimentary columns showed oxygen isotope temperatures up to 5 °C lower than today. Since Sites 1228 and 1229 are located at 150 and 250 m below sealevel, respectively, their paleo-porewater temperatures would be influenced by considerably colder surface water during glacial sealevel lowstands. Thus, Pleistocene dolomite layers in the Peru Continental margin probably formed during glacial times. This finding is consistent with a model for dolomite precipitation in the Peru Margin recently discussed by Meister et al. [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x], where dolomite forms episodically at the sulphate methane interface. It was shown that the sulphate methane interface migrates upwards and downwards within the sedimentary column, but dolomite layers may only form when the sulphate-methane interface stays at a fixed depth for a sufficient amount of time. We hypothesize that the sulphate-methane interface persists within TOC-rich interglacial sediments, while this zone is buried by TOC-poor sedimentation during glacial times. Thus, the presented oxygen isotope data provide additional information on the timing of early diagenetic dolomite formation and a possible link between episodicity in dolomite formation and sealevel variations. A similar link between early diagenesis and oceanography may also explain spacing of dolomite layers in a Milankovitch type pattern observed in the geological record, such as in the Miocene Monterey Formation.