890 resultados para crystalline


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘De Vries-like’ smectic liquid crystals exhibit low layer contraction of approximately 1% on transitions from the SmA to the SmC phase. These materials have received considerable attention as potential solutions for problems affecting liquid crystal displays using surface-stabilized ferroelectric liquid crystals (SSFLC). In SSFLCs, layer contraction of 710% is normally observed during the SmA to SmC phase transition. A study by the Lemieux group has shown that liquid crystals with nanosegregating carbosilane segments exhibit enhanced ‘de Vries-like’ properties through the formation of smectic layers and by lengthening the nanosegregating carbosilane end-groups from monocarbosilane to tricarbosilane. This observed enhancement is assumed to be due to an increase in the cross-section of the free volume in the hydrocarbon sub-layer. To test this hypothesis, it is assumed that dimers with a tricarbosilane linking group have smaller cross-sections on time average. In his thesis, this hypothesis is tested through the characterization of new liquid crystalline monomers (QL39-n) and dimers (QL40-n) with 2-phenylpyrimidine cores and tricarbosilane end-groups and spacers, respectively. The thesis describes the synthesis of two homologous series of liquid crystals and their characterization using a variety of techniques, including polarized optical microscopy, differential scanning calorimetry and X-ray diffraction. The results show that the monomers QL39-n form a tilted SmC phase only, whereas the dimers QL40-n form an orthogonal SmA phase. These results are discussed in the context of our hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block copolymers of poly(lactide) and poly(carbonate) were synthetized in three different compositions and characterized by 1H-NMR and ATR analyses. The compatibilization effect of this copolymers on 80/20 (w/w%) PLA/PCL blend was evaluated. SEM micrographs show that all the blends exhibit the typical sea-island morphology characteristic of immiscible blends with PCL finely dispersed in droplets on a PLA matrix. Upon the addiction of the copolymers a reduction on PCL droplets size is observable. At the same time, a Tg depression of the PLA phase is detected when the copolymers are added in the blend. These results indicate that these copolymers are effective as compatibilizers. The copolymer that acts as the best compatibilizer is the one characterized by the same amount of PLA and PC as repeating units. As result, in the blend containing this copolymer PLA phase exhibits the highest spherulitic growth rate. An analyses on PLA phase crystallization behaviour from the glassy state within the blends was evaluated by DSC experiments. Isothermal cold crystallization of the PLA phase is enhanced up an order of magnitude upon the blending with PCL. Annealing experiments demonstrated that the crystallization of the PCL phase induces the formation of active nuclei in PLA when cooled above cooled below Tg. When the crystallization rate of PCL is retarded, a reduction on PLA nucleation is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation covers two separate topics in statistical physics. The first part of the dissertation focuses on computational methods of obtaining the free energies (or partition functions) of crystalline solids. We describe a method to compute the Helmholtz free energy of a crystalline solid by direct evaluation of the partition function. In the many-dimensional conformation space of all possible arrangements of N particles inside a periodic box, the energy landscape consists of localized islands corresponding to different solid phases. Calculating the partition function for a specific phase involves integrating over the corresponding island. Introducing a natural order parameter that quantifies the net displacement of particles from lattices sites, we write the partition function in terms of a one-dimensional integral along the order parameter, and evaluate this integral using umbrella sampling. We validate the method by computing free energies of both face-centered cubic (FCC) and hexagonal close-packed (HCP) hard sphere crystals with a precision of $10^{-5}k_BT$ per particle. In developing the numerical method, we find several scaling properties of crystalline solids in the thermodynamic limit. Using these scaling properties, we derive an explicit asymptotic formula for the free energy per particle in the thermodynamic limit. In addition, we describe several changes of coordinates that can be used to separate internal degrees of freedom from external, translational degrees of freedom. The second part of the dissertation focuses on engineering idealized physical devices that work as Maxwell's demon. We describe two autonomous mechanical devices that extract energy from a single heat bath and convert it into work, while writing information onto memory registers. Additionally, both devices can operate as Landauer's eraser, namely they can erase information from a memory register, while energy is dissipated into the heat bath. The phase diagrams and the efficiencies of the two models are solved and analyzed. These two models provide concrete physical illustrations of the thermodynamic consequences of information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.