998 resultados para cortical modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation ?Task analysis for designing modern collaborative work needs a more fine grained approach. Especially in a complex task domain, like collaborative scientific authoring, when there is a single overall goal that can only be accomplished only by collaboration between multiple roles, each requiring its own expertise. We analyzed and re-considered roles, activities, and objects for design for complex collaboration contexts. Our main focus is on a generic approach to design for multiple roles and subtasks in a domain with a shared overall goal, which requires a detailed approach. Collaborative authoring is our current example. This research is incremental: an existing task analysis approach (GTA) is reconsidered by applying it to a case of complex collaboration. Our analysis shows that designing for collaboration indeed requires a refined approach to task modeling: GTA, in future, will need to consider tasks at the lowest level that can be delegated or mandates. These tasks need to be analyzed and redesigned in more in detail, along with the relevant task object.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process choreographies describe interactions between different business partners and the dependencies between these interactions. While different proposals were made for capturing choreographies at an implementation level, it remains unclear how choreographies should be described on a conceptual level.While the Business Process Modeling Notation (BPMN) is already in use for describing choreographies in terms of interconnected interface behavior models, this paper will introduce interaction modeling using BPMN. Such interaction models do not suffer from incompatibility issues and are better suited for human modelers. BPMN extensions are proposed and a mapping from interaction models to interface behavior models is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels of associations and also suffer from a high computational overhead. In this paper, we propose to compute association rules from pseudo feedback documents that are segmented into variable length chunks via multiple sliding windows of different sizes. Extensive experiments have been conducted on various TREC collections and our approach significantly outperforms a baseline Query Likelihood language model, the Relevance Model and the Information Flow model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase and constant-frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two-series-connected-and-one-isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub- and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. A dynamic mathematical model, which accurately predicts the behavior of the proposed generator, is also presented and implemented in MATLAB/Simulink. Experimental results of a 2-kW prototype generator under various operating conditions are presented, together with theoretical results, to demonstrate the viability of the TSCAOI power generation. The proposed generator is simple and capable of both storage and retrieval of energy through its excitation winding and is expected to be suitable for applications, such as small wind turbines and microhydro systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene and carbon nanotubes are the most promising nanomaterials for application in various modern nanodevices. The successful production of the nanotubes and graphene in a single process was achieved by using a magnetically enhanced arc discharge in helium atmosphere between carbon and metal electrodes. A 3-D fluid model has been used to investigate the discharge parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is a disease of signal transduction in which the dysregulation of the network of intracellular and extracellular signaling cascades is sufficient to thwart the cells finely-tuned biochemical control mechanisms. A keen interest in the mathematical modeling of cell signaling networks and the regulation of signal transduction has emerged in recent years, and has produced a glimmer of insight into the sophisticated feedback control and network regulation operating within cells. In this review, we present an overview of published theoretical studies on the control aspects of signal transduction, emphasizing the role and importance of mechanisms such as ‘ultrasensitivity’ and feedback loops. We emphasize that these exquisite and often subtle control strategies represent the key to orchestrating ‘simple’ signaling behaviors within the complex intracellular network, while regulating the trade-off between sensitivity and robustness to internal and external perturbations. Through a consideration of these apparent paradoxes, we explore how the basic homeostasis of the intracellular signaling network, in the face of carcinogenesis, can lead to neoplastic progression rather than cell death. A simple mathematical model is presented, furnishing a vivid illustration of how ‘control-oriented’ models of the deranged signaling networks in cancer cells may enucleate improved treatment strategies, including patient-tailored combination therapies, with the potential for reduced toxicity and more robust and potent antitumor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic knowledge is supported by a widely distributed neuronal network, with differential patterns of activation depending upon experimental stimulus or task demands. Despite a wide body of knowledge on semantic object processing from the visual modality, the response of this semantic network to environmental sounds remains relatively unknown. Here, we used fMRI to investigate how access to different conceptual attributes from environmental sound input modulates this semantic network. Using a range of living and manmade sounds, we scanned participants whilst they carried out an object attribute verification task. Specifically, we tested visual perceptual, encyclopedic, and categorical attributes about living and manmade objects relative to a high-level auditory perceptual baseline to investigate the differential patterns of response to these contrasting types of object-related attributes, whilst keeping stimulus input constant across conditions. Within the bilateral distributed network engaged for processing environmental sounds across all conditions, we report here a highly significant dissociation within the left hemisphere between the processing of visual perceptual and encyclopedic attributes of objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.