874 resultados para correlation-based feature selection
Resumo:
O peso do peito possui grande importância econômica na indústria de frangos, podendo estar associado a outras variáveis passíveis de seleção. Estimaram-se correlações fenotípicas entre características de desempenho (peso vivo aos 7, 28 dias e ao abate e profundidade de músculo peitoral por ultra-sonografia), carcaça (peso eviscerado e de pernas) e composição corporal (peso do coração, do fígado e da gordura abdominal), em uma linhagem de frangos, e quantificou-se a influência direta e indireta destas variáveis sobre o peso do peito. Para tanto, utilizou-se a análise de trilha, desdobrando-se a matriz de correlações parciais em coeficientes que forneceram a influência direta de uma variável sobre a outra, independentemente das demais. A manutenção das variáveis peso vivo ao abate e peso eviscerado na matriz de correlações pode ser prejudicial à análise estatística que envolve os sistemas de equações normais, como a análise de trilha, devido à multicolinearidade observada. O peso vivo ao abate e a profundidade do músculo peitoral por ultra-sonografia apresentaram efeitos diretos importantes sobre o peso de peito e foram identificadas como as principais responsáveis pela magnitude dos coeficientes de correlação obtidos. Assim, uma pré-seleção individual para estas características pode favorecer um aumento no peso de peito nesta linhagem, se mantidas as condições ambientais de criação dos frangos, uma vez que o peso vivo ao abate e a profundidade de músculo peitoral por ultra-sonografia afetam fenotipicamente e diretamente o peso de peito.
Resumo:
The outdating of cartographic products affects planning. It is important to propose methods to help detect changes in surface. Thus, the combined use of remote sensing image and techniques of digital image processing has contributed significantly to minimize such outdating. Mathematical morphology is an image processing technique which describes quantitatively geometric structures presented in the image and provides tools such as edge detectors and morphological filters. Previous studies have shown that the technique has potential on the detection of significant features. Thus, this paper proposes a routine of morphological operators to detect a road network. The test area corresponds to an excerpt Quickbird image and has as a feature of interest an avenue of the city of Presidente Prudente, SP. In the processing, the main morphological operators used were threshad, areaopen, binary and erosion. To estimate the accuracy with which the linear features were detected, it was done the analysis of linear correlation between vectors of the features detected and the corresponding topographical map of the region. The results showed that the mathematical morphology can be used in cartography, aiming to use them in conventional cartographic updating processes.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Para compor um sistema de Reconhecimento Automático de Voz, pode ser utilizada uma tarefa chamada Classificação Fonética, onde a partir de uma amostra de voz decide-se qual fonema foi emitido por um interlocutor. Para facilitar a classificação e realçar as características mais marcantes dos fonemas, normalmente, as amostras de voz são pré- processadas através de um fronl-en'L Um fron:-end, geralmente, extrai um conjunto de parâmetros para cada amostra de voz. Após este processamento, estes parâmetros são insendos em um algoritmo classificador que (já devidamente treinado) procurará decidir qual o fonema emitido. Existe uma tendência de que quanto maior a quantidade de parâmetros utilizados no sistema, melhor será a taxa de acertos na classificação. A contrapartida para esta tendência é o maior custo computacional envolvido. A técnica de Seleção de Parâmetros tem como função mostrar quais os parâmetros mais relevantes (ou mais utilizados) em uma tarefa de classificação, possibilitando, assim, descobrir quais os parâmetros redundantes, que trazem pouca (ou nenhuma) contribuição à tarefa de classificação. A proposta deste trabalho é aplicar o classificador SVM à classificação fonética, utilizando a base de dados TIMIT, e descobrir os parâmetros mais relevantes na classificação, aplicando a técnica Boosting de Seleção de Parâmetros.
Resumo:
Sistemas de reconhecimento e síntese de voz são constituídos por módulos que dependem da língua e, enquanto existem muitos recursos públicos para alguns idiomas (p.e. Inglês e Japonês), os recursos para Português Brasileiro (PB) ainda são escassos. Outro aspecto é que, para um grande número de tarefas, a taxa de erro dos sistemas de reconhecimento de voz atuais ainda é elevada, quando comparada à obtida por seres humanos. Assim, apesar do sucesso das cadeias escondidas de Markov (HMM), é necessária a pesquisa por novos métodos. Este trabalho tem como motivação esses dois fatos e se divide em duas partes. A primeira descreve o desenvolvimento de recursos e ferramentas livres para reconhecimento e síntese de voz em PB, consistindo de bases de dados de áudio e texto, um dicionário fonético, um conversor grafema-fone, um separador silábico e modelos acústico e de linguagem. Todos os recursos construídos encontram-se publicamente disponíveis e, junto com uma interface de programação proposta, têm sido usados para o desenvolvimento de várias novas aplicações em tempo-real, incluindo um módulo de reconhecimento de voz para a suíte de aplicativos para escritório OpenOffice.org. São apresentados testes de desempenho dos sistemas desenvolvidos. Os recursos aqui produzidos e disponibilizados facilitam a adoção da tecnologia de voz para PB por outros grupos de pesquisa, desenvolvedores e pela indústria. A segunda parte do trabalho apresenta um novo método para reavaliar (rescoring) o resultado do reconhecimento baseado em HMMs, o qual é organizado em uma estrutura de dados do tipo lattice. Mais especificamente, o sistema utiliza classificadores discriminativos que buscam diminuir a confusão entre pares de fones. Para cada um desses problemas binários, são usadas técnicas de seleção automática de parâmetros para escolher a representaçãao paramétrica mais adequada para o problema em questão.
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A redução da dose de radiação ao paciente é aceita em Radiologia Odontológica, com a finalidade de diminuir os riscos associados ao exame radiográfico. Para atingir este objetivo, além do avanço tecnológico ocorrido nas últimas décadas, devemos considerar a importância do Critério de Seleção para o paciente e da prescrição radiográfica na indicação correta do tipo de radiografia necessária para cada um deles. O objetivo deste trabalho foi avaliar a prescrição radiográfica de pacientes atendidos pelo Serviço de Medicina Bucal da Faculdade de Odontologia de Araraquara - UNESP durante o período de 1989 a 1993. Selecionamos 396 prontuários que constituiu a totalidade dos que continham exames radiográficos. Para a análise da prescrição radiográfica, consideramos as informações obtidas da ficha clínica e da interpretação das radiografias, utilizando os Critérios de Seleção e a análise de decisão clínica. Os resultados demonstraram um alto índice de pacientes com prescrição incorreta (44,0%); tendo em 24,7% dos pacientes ocorrido mais de uma radiografia prescrita incorretamente. Com relação ao tipo de técnica com prescrição incorreta, em 31,6% dos pacientes foi realizada a radiografia panorâmica, vindo a seguir a oclusal (28,7%), outro (17,2%) e a associação da panorâmica e oclusal (12,6%). Pacientes portadores de doenças e alterações de tecido mole tiveram a mais alta freqüência de prescrições incorretas, seguidos pelos portadores de doenças das glândulas salivares (13,5%) (incluindo os tumores); outros (10,1%); distúrbios da A.T.M. (9,0%); inflamação e infecção dos maxilares (6,8%); tumores benignos (5,6%) e tumores malignos (5,6%). Em 62,9% dos pacientes, o exame radiográfico contribuiu para o diagnóstico e tratamento. A alta porcentagem de prescrição incorreta encontrada evidencia a necessidade de... (Resumo completo, clicar acesso eletrônico abaixo).
Resumo:
Intense selection among broilers, especially for performance and carcass traits, currently favors locomotion problems and bone resistance. Conducting studies relating to development and growth of bone tissue in broilers is necessary to minimize losses. Thus, genetic parameters were estimated for a broiler population's phenotypic traits such as BW at 42 d of age (BW42), chilled femur weight (CFW) and its yield (CFY), and femur measurements: calcium, DM, magnesium, phosphorus, and zinc content; breaking strength; rigidity; length; and thickness. Variance components were estimated through multitrait analyses using the restricted maximum likelihood method. The model included a fixed group effect (sex and hatch) and additive and residual genetic random effects. The heritability estimates we obtained ranged from 0.10 ± 0.05 to 0.50 ± 0.08 for chilled femur yield and BW42, respectively, and indicated that the traits can respond to the selection process, except for CFY, which presented low-magnitude heritability coefficients. Genetic correlation estimates between breaking strength, rigidity, and traits related to mineral content indicated that selection that aims to improve the breaking strength resistance of the femur is highly correlated with mineral content. Given the genetic correlation estimates between BW42 and minerals, it is suggested that in this population, selection for BW42 can be performed with greater intensity without affecting femoral integrity.
Resumo:
This work proposes a system for classification of industrial steel pieces by means of magnetic nondestructive device. The proposed classification system presents two main stages, online system stage and off-line system stage. In online stage, the system classifies inputs and saves misclassification information in order to perform posterior analyses. In the off-line optimization stage, the topology of a Probabilistic Neural Network is optimized by a Feature Selection algorithm combined with the Probabilistic Neural Network to increase the classification rate. The proposed Feature Selection algorithm searches for the signal spectrogram by combining three basic elements: a Sequential Forward Selection algorithm, a Feature Cluster Grow algorithm with classification rate gradient analysis and a Sequential Backward Selection. Also, a trash-data recycling algorithm is proposed to obtain the optimal feedback samples selected from the misclassified ones.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.