975 resultados para conjugate meningococcal vaccines
Resumo:
A hybrid structure of a synthetic dendronized polymer, two different types of enzymes (superoxide dismutase and horseradish peroxidase), and a fluorescent dye (fluorescein) was synthesized. Thereby, a single polymer chain carried multiple copies of the two enzymes and the fluorescein. The entire attachment chemistry is based on UV/vis-quantifiable bis-aryl hydrazone bond formation that allows direct quantification of bound molecules: 60 superoxide dismutase, 120 horseradish peroxidase, and 20 fluorescein molecules on an average polymer chain of 2000 repeating units. To obtain other enzyme ratios the experimental conditions were altered accordingly. Moreover, it could be shown that both enzymes remained fully active and catalyzed a two-step cascade reaction.
Resumo:
Humoral immunity in response to an octavalent O-polysaccharide-toxin A conjugate Pseudomonas aeruginosa vaccine is well studied, and a phase III clinical study in cystic fibrosis (CF) patients is currently ongoing. In contrast, little is known about cellular immunity induced by this vaccine. Fifteen healthy volunteers were immunized on days 1 and 60. Parameters of cellular immunity were studied before vaccination on day 1, and on day 74. Analyses included flow cytometry of whole blood and antigen-induced proliferation of and cytokine production by lymphocyte cultures. The effects of immunization on the composition of peripheral blood lymphocytes as determined by flow cytometry were minor. In contrast, after immunization a highly significant increase of proliferation in response to stimulation with detoxified toxin A was noted: the stimulation index rose from 1.4 on day 1 to 42.2 on day 74 (restimulation with 0.4 microg/ml; P = 0.003). Immunization led to significant production of interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha by antigen-stimulated lymphocytes. In contrast, no significant induction of interleukin (IL)-4 or IL-10 was observed. In conclusion, immunization of healthy volunteers led to activation of cellular immunity including strong antigen-specific proliferation and cytokine production. In CF patients priming of the cellular immune system towards a Th1-like pattern would be of potential advantage. Therefore, confirmatory analyses in immunized CF patients with and without chronic infection with P. aeruginosa are foreseen.
Resumo:
Hepatitis A virus (HAV) exposure in unprotected adults may cause severe and serious symptoms, with risk of both morbidity and mortality increasing with age. As seroprevalence of HAV is low in industrialised countries, and an increasing number of people, with an increasing median age, travel from areas of low HAV endemicity to high endemicity, pre-travel vaccination is warranted. Vaccination of the elderly against HAV, however, may be associated with reduced seroprotection, since the immune response decreases with age. Studies with monovalent hepatitis A vaccine or combined hepatitis A and B vaccine show good efficacy in adults in general. Few studies have assessed the immune response in older adults. The only prospective study with monovalent hepatitis A vaccine in the elderly showed a reduced seroprotection of approximately 65% after a single primary dose in subjects over the age of 50 years, while seroprotection was 98% in this age group after receiving a booster dose. The only prospective study with combined hepatitis A and B vaccine in younger subjects or older than 40 years showed similar seroprotection (99-100%) against HAV compared to a monovalent vaccine after receiving three doses. As data on seroprotection for HAV in the elderly are limited, further studies are needed to elucidate how optimal protection in the elderly can be achieved. In the mean time, based on the available data, the suggestion is made to screen elderly travellers to areas endemic for HAV for the presence of naturally acquired immunity, and, if found susceptible, be immunised well in advance of their trip, to allow time for post-vaccination antibody testing and/or administration of a second dose of the vaccine.
Resumo:
Invasive meningococcal infections show a broad clinical picture including sepsis and meningitis. Here we report on a case of sepsis and a case of meningitis, two clinical manifestations of meningococcal infections with striking differences in the clinical presentation and outcome. Meningococcal sepsis is characterized by a systemic release of endotoxins, that triggers an intense cytokine response of the host that can lead to shock and multi organ failure and death within hours. Meningococcal meningitis occurs when bacteria breach into the subarachnoidal and ventricular space during bacteremia and mortality is much lower that in sepsis. Thus meningitis may be seen as a consequence of lower pathogenicity and/or more efficient host control of the meningococci compared to sepsis.
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
Since the introduction of effective antiretroviral therapy (ART), HIV-infected individuals are travelling more frequently and international travel has become much safer. Specific concerns include the safety of ART during travel, drug adherence and interaction considerations, and effects of immunosuppression. This review describes potentially important infections, vaccine effectiveness, safety and special approaches for their use, and HIV-related issues regarding predeparture counselling. With advanced immunosuppression (CD4+ T-cell count < 200/microl or < 14%), the immunogenicity of several vaccines is reduced, complications could occur after live attenuated vaccines and certain infections acquired during travel may be more frequent or severe. Challenges include the best options for malaria chemoprophylaxis, standby treatment and medical follow-up of the increasing number of HIV-infected long-term travellers.
Resumo:
KIVA is an open Computational Fluid Dynamics (CFD) source code that is capable to compute the transient two and three-dimensional chemically reactive fluid flows with spray. The latest version in the family of KIVA codes is the KIVA-4 which is capable of handling the unstructured mesh. This project focuses on the implementation of the Conjugate Heat Transfer code (CHT) in KIVA-4. The previous version of KIVA code with conjugate heat transfer code has been developed at Michigan Technological University by Egel Urip and is be used in this project. During the first phase of the project, the difference in the code structure between the previous version of KIVA and the KIVA-4 has been studied, which is the most challenging part of the project. The second phase involves the reverse engineering where the CHT code in previous version is extracted and implemented in KIVA-4 according to the new code structure. The validation of the implemented code is performed using a 4-valve Pentroof engine case. A solid cylinder wall has been developed using GRIDGEN which surrounds 3/4th of the engine cylinder and heat transfer to the solid wall during one engine cycle (0-720 Crank Angle Degree) is compared with that of the reference result. The reference results are nothing but the same engine case run in the previous version with the original code developed by Egel. The results of current code are very much comparable to that of the reference results which verifies that successful implementation of the CHT code in KIVA-4.
Resumo:
Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.
Resumo:
BACKGROUND: To our knowledge, no study to date has compared the effects of a subunit influenza vaccine with those of a virosomal influenza vaccine on immunocompromised patients. METHODS: A prospective, double-blind, randomized study was conducted to compare the immunogenicity and reactogenicity of subunit and virosomal influenza vaccines for adult patients who had an immunosuppressive disease or who were immunocompromised as a result of treatment. RESULTS: There were 304 patients enrolled in our study: 131 with human immunodeficiency virus (HIV) infection, 47 with a chronic rheumatologic disease, 74 who underwent a renal transplant, 47 who received long-term hemodialysis, and 5 who had some other nephrologic disease. There were 151 patients who received the subunit vaccine and 153 patients who received the virosomal vaccine. A slightly higher percentage of patients from the subunit vaccine group were protected against all 3 influenza vaccine strains after being vaccinated, compared with patients from the virosomal vaccine group (41% vs. 30% of patients; P = .03). Among HIV-infected patients, the level of HIV RNA, but not the CD4 cell count, was an independent predictor of vaccine response. Among renal transplant patients, treatment with mycophenolate significantly reduced the immune response to vaccination. The 2 vaccines were comparable with regard to the frequency and severity of local and systemic reactions within 7 days after vaccination. Disease-specific scores for the activity of rheumatologic diseases did not indicate flare-ups 4-6 weeks after vaccination. CONCLUSIONS: For immunosuppressed patients, the subunit vaccine was slightly more immunogenic than the virosomal vaccine. The 2 vaccines were comparable with regard to reactogenicity. Vaccine response decreased with increasing degree of immune suppression. Among HIV-infected patients, the viral load, rather than the CD4 cell count, predicted the protective immune response to the vaccine. CLINICAL TRIALS REGISTRATION: NCT00783380 .
Resumo:
We assessed the serological responses over 10 years to repeated immunization of cystic fibrosis (CF) patients with an O-polysaccharide (OPS)-toxin A conjugate vaccine against Pseudomonas aeruginosa. A retrospective analysis was performed with sera from 25 vaccinated and 25 unvaccinated children treated at the same CF centre and matched for clinical management, age and gender. Yearly immunization led to sustained elevations of serum immunoglobulin G (IgG) antibody levels to all vaccine components. Eighteen unvaccinated patients but only eight vaccinated ones developed chronic pseudomonal lung infections. Infection rapidly caused further marked elevations of polysaccharide- but not toxin A-specific serum IgG in both immunized and nonimmunized patients, indicating that protection did not depend on the quantity of IgG present. However, qualitative analyses revealed that the protective capacity of specific serum IgG antibodies was linked to high affinity and to specificity for OPS serotypes rather than for lipopolysaccharide core epitopes.
Resumo:
Respiratory disease in beef calves has been associated with the stress of weaning. Management practices commonly delay vaccination of calves to this time, and weaning stress could potentially suppress the immune response. To reduce this stress we have been experimenting with a procedure termed “pasture weaning” in which the dams are removed and the calves remain on pasture. Observation suggests that calves weaned with this approach adapt to the weaned state much better than those held in drylot. Consequently, one would expect less stress-mediated effects including those on the immune system. Calves were weaned and assigned to groups that were pasture or drylot weaned, and calves within the groups were vaccinated with one of two inactivated virus vaccines by either the intramuscular or subcutaneous route. Weaning placement did not affect antibody responses to the viruses included in the vaccines. The route of administration did not influence responses with subcutaneous injection inducing responses equivalent to the intramuscular site. Utilization of this route for vaccination could be advantageous because it precludes the tissue damage and hidden abscessation that sometimes results from intramuscular injections. A distinct difference was noted in the immunogenicity of the vaccines with the Vira Shield product yielding significantly better responses to all viral entities.
Resumo:
The objective of this experimentation was to determine if circulating antibody titers to parainfluenza type-3 (PI-3) and infectious bovine rhinotracheitis (IBR) viruses could be enhanced by a combination of vaccines. The vaccines utilized were a modified live virus vaccine administered by the intranasal route and an inactivated virus vaccine injected intramuscularly. Virus neutralization tests were conducted on sera obtained at intervals before and following vaccination. Unfortunately, the calves were apparently exposed naturally to PI-3 virus, and the responses to that virus were inconclusive. However, antibody responses to IBR virus were dramatically enhanced by the combination of the two vaccines.
Resumo:
Three commercial inactivated virus vaccines were evaluated for immunogenicity in young calves with residual maternal antibodies. Groups of 30 calves were administered each of the vaccines at the start of the experimentation and were administered a second dose 32 days later. Serum was obtained from these calves and 30 calves in a nonvaccinated control group prior to vaccination and at 32, 61, 99 and 125 days thereafter. Antibody responses to viruses in two of the vaccines were extremely limited. The third vaccine overcame suppression by maternal antibodies and elicited responses clearly differentiated from antibody levels in the control group of calves.