985 resultados para component classification
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
Purpose: To describe and compare the content of instruments that assess environmental factors using the International Classification of Functioning, Disability and Health (ICF). Methods: A systematic search of PubMed, CINAHL and PEDro databases was conducted using a pre-determined search strategy. The identified instruments were screened independently by two investigators, and meaningful concepts were linked to the most precise ICF category according to published linking rules. Results: Six instruments were included, containing 526 meaningful concepts. Instruments had between 20% and 98% of items linked to categories in Chapter 1. The highest percentage of items from one instrument linked to categories in Chapters 2–5 varied between 9% and 50%. The presence or absence of environmental factors in a specific context is assessed in 3 instruments, while the other 3 assess the intensity of the impact of environmental factors. Discussion: Instruments differ in their content, type of assessment, and have several items linked to the same ICF category. Most instruments primarily assess products and technology (Chapter 1), highlighting the need to deepen the discussion on the theory that supports the measurement of environmental factors. This discussion should be thorough and lead to the development of methodologies and new tools that capture the underlying concepts of the ICF.
Resumo:
OBJECTIVE: To develop a Charlson-like comorbidity index based on clinical conditions and weights of the original Charlson comorbidity index. METHODS: Clinical conditions and weights were adapted from the International Classification of Diseases, 10th revision and applied to a single hospital admission diagnosis. The study included 3,733 patients over 18 years of age who were admitted to a public general hospital in the city of Rio de Janeiro, southeast Brazil, between Jan 2001 and Jan 2003. The index distribution was analyzed by gender, type of admission, blood transfusion, intensive care unit admission, age and length of hospital stay. Two logistic regression models were developed to predict in-hospital mortality including: a) the aforementioned variables and the risk-adjustment index (full model); and b) the risk-adjustment index and patient's age (reduced model). RESULTS: Of all patients analyzed, 22.3% had risk scores >1, and their mortality rate was 4.5% (66.0% of them had scores >1). Except for gender and type of admission, all variables were retained in the logistic regression. The models including the developed risk index had an area under the receiver operating characteristic curve of 0.86 (full model), and 0.76 (reduced model). Each unit increase in the risk score was associated with nearly 50% increase in the odds of in-hospital death. CONCLUSIONS: The risk index developed was able to effectively discriminate the odds of in-hospital death which can be useful when limited information is available from hospital databases.
Resumo:
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Resumo:
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
The main goal of this research study was the removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using peanut hulls. This work was mainly focused on the following aspects: chemical characterization of the biosorbent, kinetic studies, study of the pH influence in mono-component systems, equilibrium isotherms and column studies, both in mono and tri-component systems, and with a real industrial effluent from the electroplating industry. The chemical characterization of peanut hulls showed a high cellulose (44.8%) and lignin (36.1%) content, which favours biosorption of metal cations. The kinetic studies performed indicate that most of the sorption occurs in the first 30 min for all systems. In general, a pseudo-second order kinetics was followed, both in mono and tri-component systems. The equilibrium isotherms were better described by Freundlich model in all systems. Peanut hulls showed higher affinity for copper than for nickel and zinc when they are both present. The pH value between 5 and 6 was the most favourable for all systems. The sorbent capacity in column was 0.028 and 0.025 mmol g-1 for copper, respectively in mono and tri-component systems. A decrease of capacity for copper (50%) was observed when dealing with the real effluent. The Yoon-Nelson, Thomas and Yan’s models were fitted to the experimental data, being the latter the best fit.
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in São José do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
A vital role is being played by SCADA Communication for Supervisory Control and Data acquisition (SCADA) Monitoring Ststems. Devices that are designed to operate in safety-critical environments are usually designed to failsafe, but security vulnerabilities could be exploited by an attacker to disable the fail-safe mechanisms. Thus these devices must not onlybe designed for safety but also for security. This paper presents a study of the comparison of different Encryption schemes for securing SCADA Component Communication. The encryption schemes such as Symetric Key Encrypton in Wireless SCADA Environment, Assymmetric-key Encryption to Internet SCADA, and the Cross Crypto Scheme Cipher to secure communication for SCADA are analysed and the outcome is evaluated.
Resumo:
Critical Infrastructures became more vulnerable to attacks from adversaries as SCADA systems become connected to the Internet. The open standards for SCADA Communications make it very easy for attackers to gain in-depth knowledge about the working and operations of SCADA networks. A number of Intenrnet SCADA security issues were raised that have compromised the authenticity, confidentiality, integrity and non-repudiation of information transfer between SCADA Components. This paper presents an integration of the Cross Crypto Scheme Cipher to secure communications for SCADA components. The proposed scheme integrates both the best features of symmetric and asymmetric encryptiontechniques. It also utilizes the MD5 hashing algorithm to ensure the integrity of information being transmitted.