1000 resultados para comparative penology
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
The thermal degradation processes of two sulfur polymers, poly(xylylene sulfide) (PXM) and poly(xylylene disulfide) (PXD), were investigated in parallel by direct pyrolysis mass spectrometry (DPMS) and flash pyrolysis GC/MS (Py-GC/MS). Thermogravimetric data showed that these polymers decompose with two separate steps in the temperature ranges of 250-280 and 600-650 degrees C, leaving a high amount of residue (about 50% at 800 degrees C). The pyrolysis products detected by DPMS in the first degradation step of PXM and PXD were terminated by three types of end groups, -CH3, -CH2SH, and -CH=S, originating from thermal cleavage reactions involving a series of homolytic chain scissions followed by hydrogen transfer reactions, generating several oligomers containing some intact xylylene sulfide repeating units. The presence of pyrolysis compounds containing some stilbene-like units in the first degradation step has also been observed. Their formation has been accounted for with a parallel cleavage involving the elimination of H2S from the PXM main chains. These unsaturated units can undergo cross-linking at higher temperatures, producing the high amount of char residue observed. The thermal degradation compounds detected by DPMS in the second decomposition step at about 600-650 degrees C were constituted of condensed aromatic molecules containing dihydrofenanthrene and fenanthrene units. These compounds might be generated from the polymer chains containing stilbene units, by isomerization and dehydrogenation reactions. The pyrolysis products obtained in the Py-GC/MS of PXM and PXD at 610 degrees C are almost identical. The relative abundance in the pyrolysate and the spectral properties of the main pyrolysis products were found to be in generally good agreement with those obtained by DPMS. Polycyclic aromatic hydrocarbons (PAHs) were also detected by Py-GC/MS but in minor amounts with respect to DPMS. This apparent discrepancy was due to the simultaneous detection of PAHs together with all pyrolysis products in the Py-GC/MS, whereas in DPMS they were detected in the second thermal degradation step without the greatest part of pyrolysis compounds generated in the first degradation step. The results obtained by DPMS and PSI-GC/MS experiments showed complementary data for the degradation of PXM and PXD and, therefore, allowed the unequivocal formulation of the thermal degradation mechanism for these sulfur-containing polymers.
Resumo:
We evaluated three acid-resistant pancreatic enzyme preparations by in vitro assays, and by comparing degree of steatorrhea, creatorrhea, fecal wet weight, and stool energy losses in a randomized crossover study of patients with pancreatic insufficient cystic fibrosis. Aims of the study were to assess (a) the most practicable and reliable indicator of malabsorption; (b) the variation in enzyme batch potency; (c) the decline in enzyme batch potency with prolonged shelf life; and (d) the relative bio-efficacy of the different preparations. In the in vivo study, absorption of energy, nitrogen, and fat did not differ when comparing the three preparations at roughly pharmaceu-tically equivalent doses, but when expressed per capsule of pancreatic supplement ingested, absorption reflected relative enzyme content, favoring the higher potency preparations. Although steatorrhea was reasonably controlled by these preparations, stool energy losses varied from 800 to 1,100 kJ per day, suggesting greater attention be paid to overall energy absorption rather than absorption of individual nutrients. In addition, fecal energy loss correlated more closely with fecal wet weight (r = 0.81; p < 0.05) than with steatorrhea (r = 0.40; ns), such that 1 g wet feces = 8.37 kJ (± 0.14). In vitro enzyme potency varied markedly between batches of the same brand, and also a decline of up to 20% in amylase, lipase, and trypsin activity was noted over an 8-month period for each batch. Both observations have clinical implications at times of represcription. Finally, the higher potency preparations were more effective per capsule and reduced capsule dosage is therefore attainable. © 1993 Raven Press, Ltd., New York.
Resumo:
Studies on melt rheological properties of blends of low density polyethylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported, The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20-30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10 g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends.
Resumo:
The family Myrtaceae in Chile comprises 26 species in 10 genera. The species occur in a diverse rangeof environments including humid temperate forests, swamps, riparian habitats and coastal xeromorphicshrublands. Most of these species are either endemic to Chile or endemic to the humid temperate forestsof Chile and Argentina. Although many taxa have very restricted distributions and are of conservationconcern, little is known about their biology and vegetative anatomy. In this investigation, we describe andcompare the leaf anatomy and micromorphology of all Chilean Myrtaceae using standard protocols forlight and scanning electron microscopy. Leaf characters described here are related to epidermis, cuticle,papillae, stomata, hairs, mesophyll, crystals, secretory cavities and vascular system. Nearly all the specieshave a typical mesophytic leaf anatomy, but some species possess xerophytic characters such as doubleepidermis, hypodermis, pubescent leaves, thick adaxial epidermis and straight epidermal anticlinal walls,which correlate with the ecological distribution of the species. This is the first report on leaf anatomyand micromorphology in most of these species. We identified several leaf characters with potential tax-onomic and ecological significance. Some combinations of leaf characters can reliably delimitate genera,while others are unique to some species. An identification key using micromorphological and anatomicalcharacters is provided to distinguish genera and species.
Resumo:
Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.
Resumo:
The potential energy surfaces of the HCN<->HNC and LiCN<->LiNC isomerization processes were determined by ab initio theory using fully optimized triple-zeta double polarization types of basis sets. Both the MP2 corrections and the QCISD level of calculations were performed to correct for the electron correlation. Results show that electron correlation has a considerable influence on the energetics and structures. Analysis of the intramolecular bond rearrangement processes reveals that, in both cases, H (or Li+) migrates in an almost elliptic path in the plane of the molecule. In HCN<->HNC, the migrating hydrogen interacts with the in-plane pi,pi* orbitals of CN, leading to a decrease in the C-N bond order. In LiCN<->LiNC, Li+ does not interact with the corresponding pi,pi* orbitals of CN.
Resumo:
Interaction of tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) with few-layer graphene samples prepared by the exfoliation of graphite oxide (EG), conversion of nanodiamond (DG) and arc-evaporation of graphite in hydrogen (HG) has been investigated by Raman spectroscopy to understand the role of the graphene surface. The position and full-width at half maximum of the Raman G-band are affected on interaction with TTF and TCNE and the effect is highest with EG and least with HG. The effect of TTF and TCNE on the 2D-band is also maximum with EG. The magnitude of interaction between the donor/acceptor molecules varies in the same order as the surface areas of the graphenes. (C) 2009 Published by Elsevier B. V.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI.
Resumo:
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome.
Resumo:
A variety of data structures such as inverted file, multi-lists, quad tree, k-d tree, range tree, polygon tree, quintary tree, multidimensional tries, segment tree, doubly chained tree, the grid file, d-fold tree. super B-tree, Multiple Attribute Tree (MAT), etc. have been studied for multidimensional searching and related problems. Physical data base organization, which is an important application of multidimensional searching, is traditionally and mostly handled by employing inverted file. This study proposes MAT data structure for bibliographic file systems, by illustrating the superiority of MAT data structure over inverted file. Both the methods are compared in terms of preprocessing, storage and query costs. Worst-case complexity analysis of both the methods, for a partial match query, is carried out in two cases: (a) when directory resides in main memory, (b) when directory resides in secondary memory. In both cases, MAT data structure is shown to be more efficient than the inverted file method. Arguments are given to illustrate the superiority of MAT data structure in an average case also. An efficient adaptation of MAT data structure, that exploits the special features of MAT structure and bibliographic files, is proposed for bibliographic file systems. In this adaptation, suitable techniques for fixing and ranking of the attributes for MAT data structure are proposed. Conclusions and proposals for future research are presented.
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.