897 resultados para closed-loop
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.
Resumo:
Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.
Resumo:
Background: In an artificial pancreas (AP), the meals are either manually announced or detected and their size estimated from the blood glucose level. Both methods have limitations, which result in suboptimal postprandial glucose control. The GoCARB system is designed to provide the carbohydrate content of meals and is presented within the AP framework. Method: The combined use of GoCARB with a control algorithm is assessed in a series of 12 computer simulations. The simulations are defined according to the type of the control (open or closed loop), the use or not-use of GoCARB and the diabetics’ skills in carbohydrate estimation. Results: For bad estimators without GoCARB, the percentage of the time spent in target range (70-180 mg/dl) during the postprandial period is 22.5% and 66.2% for open and closed loop, respectively. When the GoCARB is used, the corresponding percentages are 99.7% and 99.8%. In case of open loop, the time spent in severe hypoglycemic events (<50 mg/dl) is 33.6% without the GoCARB and is reduced to 0.0% when the GoCARB is used. In case of closed loop, the corresponding percentage is 1.4% without the GoCARB and is reduced to 0.0% with the GoCARB. Conclusion: The use of GoCARB improves the control of postprandial response and glucose profiles especially in the case of open loop. However, the most efficient regulation is achieved by the combined use of the control algorithm and the GoCARB.
Resumo:
We conducted a six-week investigation of the sea ice inorganic carbon system during the winter-spring transition in the Canadian Arctic Archipelago. Samples for the determination of sea ice geochemistry were collected in conjunction with physical and biological parameters as part of the 2010 Arctic-ICE (Arctic - Ice-Covered Ecosystem in a Rapidly Changing Environment) program, a sea ice-based process study in Resolute Passage, Nunavut. The goal of Arctic-ICE was to determine the physical-biological processes controlling the timing of primary production in Arctic landfast sea ice and to better understand the influence of these processes on the drawdown and release of climatically active gases. The field study was conducted from 1 May to 21 June, 2010.
Resumo:
La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa (por ejemplo la obtenida a partir de los alimentos ingeridos) llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Hoy en día la tecnología actual permite abordar el desarrollo del llamado “páncreas endocrino artificial”, que consta de un sensor continuo de glucosa subcutánea, una bomba de infusión subcutánea de insulina y un algoritmo de control en lazo cerrado que calcule la dosis de insulina requerida por el paciente en cada momento, según la medida de glucosa obtenida por el sensor y según unos objetivos. El mayor problema que presentan los sistemas de control en lazo cerrado son los retardos, el sensor de glucosa subcutánea mide la glucosa del líquido intersticial, que representa la que hubo en la sangre un tiempo atrás, por tanto, un cambio en los niveles de glucosa en la sangre, debidos por ejemplo, a una ingesta, tardaría un tiempo en ser detectado por el sensor. Además, una dosis de insulina suministrada al paciente, tarda un tiempo aproximado de 20-30 minutos para la llegar a la sangre. Para evitar trabajar en la medida que sea posible con estos retardos, se intenta predecir cuál será el nivel de glucosa en un futuro próximo, para ello se utilizara un predictor de glucosa subcutánea, con la información disponible de glucosa e insulina. El objetivo del proyecto es diseñar una metodología para estimar el valor futuro de los niveles de glucosa obtenida a partir de un sensor subcutáneo, basada en la identificación recursiva del sistema glucorregulatorio a través de modelos lineales y determinando un horizonte de predicción óptimo de trabajo y analizando la influencia de la insulina en los resultados de la predicción. Se ha implementado un predictor paramétrico basado en un modelo autorregresivo ARX que predice con mejor precisión y con menor RMSE que un predictor ZOH a un horizonte de predicción de treinta minutos. Utilizar información relativa a la insulina no tiene efecto en la predicción. El preprocesado, postprocesado y el tratamiento de la estabilidad tienen un efecto muy beneficioso en la predicción. Diabetes mellitusis a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. Nowadays, the actual technology allows raising the development of the “artificial endocrine pancreas”. It involves a continuous glucose sensor, an insulin bump, and a full closed loop algorithm that calculate the insulin units required by patient at any time, according to the glucose measure obtained by the sensor and any target. The main problem of the full closed loop systems is the delays, the glucose sensor measures the glucose in the interstitial fluid that represents the glucose was in the blood some time ago. Because of this, a change in the glucose in blood would take some time to be detected by the sensor. In addition, insulin units administered by a patient take about 20-30 minutes to reach the blood stream. In order to avoid this effect, it will try to predict the glucose level in the near future. To do that, a subcutaneous glucose predictor is used to predict the future glucose with the information about insulin and glucose. The goal of the proyect is to design a method in order to estimate the future valor of glucose obtained by a subcutaneous sensor. It is based on the recursive identification of the regulatory system through the linear models, determining optimal prediction horizon and analyzing the influence of insuline on the prediction results. A parametric predictor based in ARX autoregressive model predicts with better precision and with lesser RMSE than ZOH predictor in a thirty minutes prediction horizon. Using the relative insulin information has no effect in the prediction. The preprocessing, the postprocessing and the stability treatment have many advantages in the prediction.
Resumo:
The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. The required immediate transition, from normal to emergency functioning of the ventilation equipments, is being strengthened by the use of automatic and semi-automatic control systems, what reduces the response times through the help to the operators, and the use of pre-defined strategies. A further step consists on the use of closed-loop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc.), optimizing smoke control capacity.
Resumo:
La diabetes mellitus es un trastorno del metabolismo de los carbohidratos producido por la insuficiente o nula producción de insulina o la reducida sensibilidad a esta hormona. Es una enfermedad crónica con una mayor prevalencia en los países desarrollados debido principalmente a la obesidad, la vida sedentaria y disfunciones en el sistema endocrino relacionado con el páncreas. La diabetes Tipo 1 es una enfermedad autoinmune en la que son destruidas las células beta del páncreas, que producen la insulina, y es necesaria la administración de insulina exógena. Un enfermo de diabetes Tipo 1 debe seguir una terapia con insulina administrada por la vía subcutánea que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida, esta terapia intenta imitar el perfil insulínico de un páncreas no patológico. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial”, que aportaría precisión, eficacia y seguridad para los pacientes, en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. Permitiría que el paciente no estuviera tan pendiente de su enfermedad. El páncreas artificial consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar usando la glucosa como información principal. Este trabajo presenta un método de control en lazo semi-cerrado mediante un sistema borroso experto basado en reglas. La regulación borrosa se fundamenta en la ambigüedad del lenguaje del ser humano. Esta incertidumbre sirve para la formación de una serie de reglas que representan el pensamiento humano, pero a la vez es el sistema que controla un proceso, en este caso el sistema glucorregulatorio. Este proyecto está enfocado en el diseño de un controlador borroso que haciendo uso de variables como la glucosa, insulina y dieta, sea capaz de restaurar la función endocrina del páncreas de forma tecnológica. La validación del algoritmo se ha realizado principalmente mediante experimentos en simulación utilizando una población de pacientes sintéticos, evaluando los resultados con estadísticos de primer orden y algunos más específicos como el índice de riesgo de Kovatchev, para después comparar estos resultados con los obtenidos por otros métodos de control anteriores. Los resultados demuestran que el control borroso (FBPC) mejora el control glucémico con respecto a un sistema predictivo experto basado en reglas booleanas (pBRES). El FBPC consigue reducir siempre la glucosa máxima y aumentar la mínima respecto del pBRES pero es en terapias desajustadas, donde el FBPC es especialmente robusto, hace descender la glucosa máxima 8,64 mg/dl, el uso de insulina es 3,92 UI menor, aumenta la glucosa mínima 3,32 mg/dl y lleva al rango de glucosa 80 – 110 mg/dl 15,33 muestras más. Por lo tanto se puede concluir que el FBPC realiza un mejor control glucémico que el controlador pBRES haciéndole especialmente efectivo, robusto y seguro en condiciones de desajustes de terapia basal y con gran capacidad de mejora futura. SUMMARY The diabetes mellitus is a metabolic disorder caused by a poor or null insulin secretion or a reduced sensibility to insulin. Diabetes is a chronic disease with a higher prevalence in the industrialized countries, mainly due to obesity, the sedentary life and endocrine disfunctions connected with the pancreas. Type 1 diabetes is a self-immune disease where the beta cells of the pancreas, which are the responsible of secreting insulin, are damaged. Hence, it is necessary an exogenous delivery of insulin. The Type 1 diabetic patient has to follow a therapy with subcutaneous insulin administration which should be adjusted to his/her metabolic needs and life style. This therapy tries to mimic the insulin profile of a non-pathological pancreas. Current technology lets the development of the so-called endocrine artificial pancreas that would provide accuracy, efficiency and safety to patients, in regards to the glycemic control normalization and reduction of the risk of hypoglycemic. In addition, it would help the patient not to be so concerned about his disease. The artificial pancreas has a continuous glucose sensor, an insulin infusion pump and a control algorithm, that calculates the insulin infusion using the glucose as main information. This project presents a method of control in semi-closed-loop, through an expert fuzzy system based on rules. The fuzzy regulation is based on the human language ambiguity. This uncertainty serves for construction of some rules that represent the human language besides it is the system that controls a process, in this case the glucoregulatory system. This project is focus on the design of a fuzzy controller that, using variables like glucose insulin and diet, will be able to restore the pancreas endocrine function with technology. The algorithm assessment has mainly been done through experiments in simulation using a population of synthetic patients, evaluating the results with first order statistical parameters and some other more specific such as the Kovatchev risk index, to compare later these results with the ones obtained in others previous methods of control. The results demonstrate that the fuzzy control (FBPC) improves the glycemic control connected with a predictive expert system based on Booleans rules (pBRES). The FBPC is always able to reduce the maximum level of glucose and increase the minimum level as compared with pBRES but it is in unadjusted therapies where FBPC is especially strong, it manages to decrease the maximum level of glucose and insulin used by 8,64 mg/dl and 3,92 UI respectively, also increases the value of minimum glucose by 3,32 mg/dl, getting 15,33 samples more inside the 80-110 mg/dl glucose rank. Therefore we can conclude that FBPC achieves a better glycemic control than the controller pBRES doing it especially effective, robust and safe in conditions of mismatch basal therapy and with a great capacity for future improvements.
Resumo:
La Diabetes Mellitus se define como el trastorno del metabolismo de los carbohidratos, resultante de una producción insuficiente o nula de insulina en las células beta del páncreas, o la manifestación de una sensibilidad reducida a la insulina por parte del sistema metabólico. La diabetes tipo 1 se caracteriza por la nula producción de insulina por la destrucción de las células beta del páncreas. Si no hay insulina en el torrente sanguíneo, la glucosa no puede ser absorbida por las células, produciéndose un estado de hiperglucemia en el paciente, que a medio y largo plazo si no es tratado puede ocasionar severas enfermedades, conocidos como síndromes de la diabetes. La diabetes tipo 1 es una enfermedad incurable pero controlable. La terapia para esta enfermedad consiste en la aplicación exógena de insulina con el objetivo de mantener el nivel de glucosa en sangre dentro de los límites normales. Dentro de las múltiples formas de aplicación de la insulina, en este proyecto se usará una bomba de infusión, que unida a un sensor subcutáneo de glucosa permitirá crear un lazo de control autónomo que regule la cantidad optima de insulina aplicada en cada momento. Cuando el algoritmo de control se utiliza en un sistema digital, junto con el sensor subcutáneo y bomba de infusión subcutánea, se conoce como páncreas artificial endocrino (PAE) de uso ambulatorio, hoy día todavía en fase de investigación. Estos algoritmos de control metabólico deben de ser evaluados en simulación para asegurar la integridad física de los pacientes, por lo que es necesario diseñar un sistema de simulación mediante el cual asegure la fiabilidad del PAE. Este sistema de simulación conecta los algoritmos con modelos metabólicos matemáticos para obtener una visión previa de su funcionamiento. En este escenario se diseñó DIABSIM, una herramienta desarrollada en LabViewTM, que posteriormente se trasladó a MATLABTM, y basada en el modelo matemático compartimental propuesto por Hovorka, con la que poder simular y evaluar distintos tipos de terapias y reguladores en lazo cerrado. Para comprobar que estas terapias y reguladores funcionan, una vez simulados y evaluados, se tiene que pasar a la experimentación real a través de un protocolo de ensayo clínico real, como paso previo al PEA ambulatorio. Para poder gestionar este protocolo de ensayo clínico real para la verificación de los algoritmos de control, se creó una interfaz de usuario a través de una serie de funciones de simulación y evaluación de terapias con insulina realizadas con MATLABTM (GUI: Graphics User Interface), conocido como Entorno de Páncreas artificial con Interfaz Clínica (EPIC). EPIC ha sido ya utilizada en 10 ensayos clínicos de los que se han ido proponiendo posibles mejoras, ampliaciones y/o cambios. Este proyecto propone una versión mejorada de la interfaz de usuario EPIC propuesta en un proyecto anterior para gestionar un protocolo de ensayo clínico real para la verificación de algoritmos de control en un ambiente hospitalario muy controlado, además de estudiar la viabilidad de conectar el GUI con SimulinkTM (entorno gráfico de Matlab de simulación de sistemas) para su conexión con un nuevo simulador de pacientes aprobado por la JDRF (Juvenil Diabetes Research Foundation). SUMMARY The diabetes mellitus is a metabolic disorder of carbohydrates, as result of an insufficient or null production of insulin in the beta cellules of pancreas, or the manifestation of a reduced sensibility to the insulin from the metabolic system. The type 1 diabetes is characterized for a null production of insulin due to destruction of the beta cellules. Without insulin in the bloodstream, glucose can’t be absorbed by the cellules, producing a hyperglycemia state in the patient and if pass a medium or long time and is not treated can cause severe disease like diabetes syndrome. The type 1 diabetes is an incurable disease but controllable one. The therapy for this disease consists on the exogenous insulin administration with the objective to maintain the glucose level in blood within the normal limits. For the insulin administration, in this project is used an infusion pump, that permit with a subcutaneous glucose sensor, create an autonomous control loop that regulate the optimal insulin amount apply in each moment. When the control algorithm is used in a digital system, with the subcutaneous senor and infusion subcutaneous pump, is named as “Artificial Endocrine Pancreas” for ambulatory use, currently under investigate. These metabolic control algorithms should be evaluates in simulation for assure patients’ physical integrity, for this reason is necessary to design a simulation system that assure the reliability of PAE. This simulation system connects algorithms with metabolic mathematics models for get a previous vision of its performance. In this scenario was created DIABSIMTM, a tool developed in LabView, that later was converted to MATLABTM, and based in the compartmental mathematic model proposed by Hovorka that could simulate and evaluate several different types of therapy and regulators in closed loop. To check the performance of these therapies and regulators, when have been simulated and evaluated, will be necessary to pass to real experimentation through a protocol of real clinical test like previous step to ambulatory PEA. To manage this protocol was created an user interface through the simulation and evaluation functions od therapies with insulin realized with MATLABTM (GUI: Graphics User Interface), known as “Entorno de Páncreas artificial con Interfaz Clínica” (EPIC).EPIC have been used in 10 clinical tests which have been proposed improvements, adds and changes. This project proposes a best version of user interface EPIC proposed in another project for manage a real test clinical protocol for checking control algorithms in a controlled hospital environment and besides studying viability to connect the GUI with SimulinkTM (Matlab graphical environment in systems simulation) for its connection with a new patients simulator approved for the JDRF (Juvenil Diabetes Research Foundation).
Resumo:
Antecedentes Europa vive una situación insostenible. Desde el 2008 se han reducido los recursos de los gobiernos a raíz de la crisis económica. El continente Europeo envejece con ritmo constante al punto que se prevé que en 2050 habrá sólo dos trabajadores por jubilado [54]. A esta situación se le añade el aumento de la incidencia de las enfermedades crónicas, relacionadas con el envejecimiento, cuyo coste puede alcanzar el 7% del PIB de un país [51]. Es necesario un cambio de paradigma. Una nueva manera de cuidar de la salud de las personas: sustentable, eficaz y preventiva más que curativa. Algunos estudios abogan por el cuidado personalizado de la salud (pHealth). En este modelo las prácticas médicas son adaptadas e individualizadas al paciente, desde la detección de los factores de riesgo hasta la personalización de los tratamientos basada en la respuesta del individuo [81]. El cuidado personalizado de la salud está asociado a menudo al uso de las tecnologías de la información y comunicación (TICs) que, con su desarrollo exponencial, ofrecen oportunidades interesantes para la mejora de la salud. El cambio de paradigma hacia el pHealth está lentamente ocurriendo, tanto en el ámbito de la investigación como en la industria, pero todavía no de manera significativa. Existen todavía muchas barreras relacionadas a la economía, a la política y la cultura. También existen barreras puramente tecnológicas, como la falta de sistemas de información interoperables [199]. A pesar de que los aspectos de interoperabilidad están evolucionando, todavía hace falta un diseño de referencia especialmente direccionado a la implementación y el despliegue en gran escala de sistemas basados en pHealth. La presente Tesis representa un intento de organizar la disciplina de la aplicación de las TICs al cuidado personalizado de la salud en un modelo de referencia, que permita la creación de plataformas de desarrollo de software para simplificar tareas comunes de desarrollo en este dominio. Preguntas de investigación RQ1 >Es posible definir un modelo, basado en técnicas de ingeniería del software, que represente el dominio del cuidado personalizado de la salud de una forma abstracta y representativa? RQ2 >Es posible construir una plataforma de desarrollo basada en este modelo? RQ3 >Esta plataforma ayuda a los desarrolladores a crear sistemas pHealth complejos e integrados? Métodos Para la descripción del modelo se adoptó el estándar ISO/IEC/IEEE 42010por ser lo suficientemente general y abstracto para el amplio enfoque de esta tesis [25]. El modelo está definido en varias partes: un modelo conceptual, expresado a través de mapas conceptuales que representan las partes interesadas (stakeholders), los artefactos y la información compartida; y escenarios y casos de uso para la descripción de sus funcionalidades. El modelo fue desarrollado de acuerdo a la información obtenida del análisis de la literatura, incluyendo 7 informes industriales y científicos, 9 estándares, 10 artículos en conferencias, 37 artículos en revistas, 25 páginas web y 5 libros. Basándose en el modelo se definieron los requisitos para la creación de la plataforma de desarrollo, enriquecidos por otros requisitos recolectados a través de una encuesta realizada a 11 ingenieros con experiencia en la rama. Para el desarrollo de la plataforma, se adoptó la metodología de integración continua [74] que permitió ejecutar tests automáticos en un servidor y también desplegar aplicaciones en una página web. En cuanto a la metodología utilizada para la validación se adoptó un marco para la formulación de teorías en la ingeniería del software [181]. Esto requiere el desarrollo de modelos y proposiciones que han de ser validados dentro de un ámbito de investigación definido, y que sirvan para guiar al investigador en la búsqueda de la evidencia necesaria para justificarla. La validación del modelo fue desarrollada mediante una encuesta online en tres rondas con un número creciente de invitados. El cuestionario fue enviado a 134 contactos y distribuido en algunos canales públicos como listas de correo y redes sociales. El objetivo era evaluar la legibilidad del modelo, su nivel de cobertura del dominio y su potencial utilidad en el diseño de sistemas derivados. El cuestionario incluía preguntas cuantitativas de tipo Likert y campos para recolección de comentarios. La plataforma de desarrollo fue validada en dos etapas. En la primera etapa se utilizó la plataforma en un experimento a pequeña escala, que consistió en una sesión de entrenamiento de 12 horas en la que 4 desarrolladores tuvieron que desarrollar algunos casos de uso y reunirse en un grupo focal para discutir su uso. La segunda etapa se realizó durante los tests de un proyecto en gran escala llamado HeartCycle [160]. En este proyecto un equipo de diseñadores y programadores desarrollaron tres aplicaciones en el campo de las enfermedades cardio-vasculares. Una de estas aplicaciones fue testeada en un ensayo clínico con pacientes reales. Al analizar el proyecto, el equipo de desarrollo se reunió en un grupo focal para identificar las ventajas y desventajas de la plataforma y su utilidad. Resultados Por lo que concierne el modelo que describe el dominio del pHealth, la parte conceptual incluye una descripción de los roles principales y las preocupaciones de los participantes, un modelo de los artefactos TIC que se usan comúnmente y un modelo para representar los datos típicos que son necesarios formalizar e intercambiar entre sistemas basados en pHealth. El modelo funcional incluye un conjunto de 18 escenarios, repartidos en: punto de vista de la persona asistida, punto de vista del cuidador, punto de vista del desarrollador, punto de vista de los proveedores de tecnologías y punto de vista de las autoridades; y un conjunto de 52 casos de uso repartidos en 6 categorías: actividades de la persona asistida, reacciones del sistema, actividades del cuidador, \engagement" del usuario, actividades del desarrollador y actividades de despliegue. Como resultado del cuestionario de validación del modelo, un total de 65 personas revisó el modelo proporcionando su nivel de acuerdo con las dimensiones evaluadas y un total de 248 comentarios sobre cómo mejorar el modelo. Los conocimientos de los participantes variaban desde la ingeniería del software (70%) hasta las especialidades médicas (15%), con declarado interés en eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), medicina personalizada (5%), sistemas basados en pHealth (15%), informática médica (10%) e ingeniería biomédica (8%) con una media de 7.25_4.99 años de experiencia en estas áreas. Los resultados de la encuesta muestran que los expertos contactados consideran el modelo fácil de leer (media de 1.89_0.79 siendo 1 el valor más favorable y 5 el peor), suficientemente abstracto (1.99_0.88) y formal (2.13_0.77), con una cobertura suficiente del dominio (2.26_0.95), útil para describir el dominio (2.02_0.7) y para generar sistemas más específicos (2_0.75). Los expertos también reportan un interés parcial en utilizar el modelo en su trabajo (2.48_0.91). Gracias a sus comentarios, el modelo fue mejorado y enriquecido con conceptos que faltaban, aunque no se pudo demonstrar su mejora en las dimensiones evaluadas, dada la composición diferente de personas en las tres rondas de evaluación. Desde el modelo, se generó una plataforma de desarrollo llamada \pHealth Patient Platform (pHPP)". La plataforma desarrollada incluye librerías, herramientas de programación y desarrollo, un tutorial y una aplicación de ejemplo. Se definieron cuatro módulos principales de la arquitectura: el Data Collection Engine, que permite abstraer las fuentes de datos como sensores o servicios externos, mapeando los datos a bases de datos u ontologías, y permitiendo interacción basada en eventos; el GUI Engine, que abstrae la interfaz de usuario en un modelo de interacción basado en mensajes; y el Rule Engine, que proporciona a los desarrolladores un medio simple para programar la lógica de la aplicación en forma de reglas \if-then". Después de que la plataforma pHPP fue utilizada durante 5 años en el proyecto HeartCycle, 5 desarrolladores fueron reunidos en un grupo de discusión para analizar y evaluar la plataforma. De estas evaluaciones se concluye que la plataforma fue diseñada para encajar las necesidades de los ingenieros que trabajan en la rama, permitiendo la separación de problemas entre las distintas especialidades, y simplificando algunas tareas de desarrollo como el manejo de datos y la interacción asíncrona. A pesar de ello, se encontraron algunos defectos a causa de la inmadurez de algunas tecnologías empleadas, y la ausencia de algunas herramientas específicas para el dominio como el procesado de datos o algunos protocolos de comunicación relacionados con la salud. Dentro del proyecto HeartCycle la plataforma fue utilizada para el desarrollo de la aplicación \Guided Exercise", un sistema TIC para la rehabilitación de pacientes que han sufrido un infarto del miocardio. El sistema fue testeado en un ensayo clínico randomizado en el cual a 55 pacientes se les dio el sistema para su uso por 21 semanas. De los resultados técnicos del ensayo se puede concluir que, a pesar de algunos errores menores prontamente corregidos durante el estudio, la plataforma es estable y fiable. Conclusiones La investigación llevada a cabo en esta Tesis y los resultados obtenidos proporcionan las respuestas a las tres preguntas de investigación que motivaron este trabajo: RQ1 Se ha desarrollado un modelo para representar el dominio de los sistemas personalizados de salud. La evaluación hecha por los expertos de la rama concluye que el modelo representa el dominio con precisión y con un balance apropiado entre abstracción y detalle. RQ2 Se ha desarrollado, con éxito, una plataforma de desarrollo basada en el modelo. RQ3 Se ha demostrado que la plataforma es capaz de ayudar a los desarrolladores en la creación de software pHealth complejos. Las ventajas de la plataforma han sido demostradas en el ámbito de un proyecto de gran escala, aunque el enfoque genérico adoptado indica que la plataforma podría ofrecer beneficios también en otros contextos. Los resultados de estas evaluaciones ofrecen indicios de que, ambos, el modelo y la plataforma serán buenos candidatos para poderse convertir en una referencia para futuros desarrollos de sistemas pHealth. ABSTRACT Background Europe is living in an unsustainable situation. The economic crisis has been reducing governments' economic resources since 2008 and threatening social and health systems, while the proportion of older people in the European population continues to increase so that it is foreseen that in 2050 there will be only two workers per retiree [54]. To this situation it should be added the rise, strongly related to age, of chronic diseases the burden of which has been estimated to be up to the 7% of a country's gross domestic product [51]. There is a need for a paradigm shift, the need for a new way of caring for people's health, shifting the focus from curing conditions that have arisen to a sustainable and effective approach with the emphasis on prevention. Some advocate the adoption of personalised health care (pHealth), a model where medical practices are tailored to the patient's unique life, from the detection of risk factors to the customization of treatments based on each individual's response [81]. Personalised health is often associated to the use of Information and Communications Technology (ICT), that, with its exponential development, offers interesting opportunities for improving healthcare. The shift towards pHealth is slowly taking place, both in research and in industry, but the change is not significant yet. Many barriers still exist related to economy, politics and culture, while others are purely technological, like the lack of interoperable information systems [199]. Though interoperability aspects are evolving, there is still the need of a reference design, especially tackling implementation and large scale deployment of pHealth systems. This thesis contributes to organizing the subject of ICT systems for personalised health into a reference model that allows for the creation of software development platforms to ease common development issues in the domain. Research questions RQ1 Is it possible to define a model, based on software engineering techniques, for representing the personalised health domain in an abstract and representative way? RQ2 Is it possible to build a development platform based on this model? RQ3 Does the development platform help developers create complex integrated pHealth systems? Methods As method for describing the model, the ISO/IEC/IEEE 42010 framework [25] is adopted for its generality and high level of abstraction. The model is specified in different parts: a conceptual model, which makes use of concept maps, for representing stakeholders, artefacts and shared information, and in scenarios and use cases for the representation of the functionalities of pHealth systems. The model was derived from literature analysis, including 7 industrial and scientific reports, 9 electronic standards, 10 conference proceedings papers, 37 journal papers, 25 websites and 5 books. Based on the reference model, requirements were drawn for building the development platform enriched with a set of requirements gathered in a survey run among 11 experienced engineers. For developing the platform, the continuous integration methodology [74] was adopted which allowed to perform automatic tests on a server and also to deploy packaged releases on a web site. As a validation methodology, a theory building framework for SW engineering was adopted from [181]. The framework, chosen as a guide to find evidence for justifying the research questions, imposed the creation of theories based on models and propositions to be validated within a scope. The validation of the model was conducted as an on-line survey in three validation rounds, encompassing a growing number of participants. The survey was submitted to 134 experts of the field and on some public channels like relevant mailing lists and social networks. Its objective was to assess the model's readability, its level of coverage of the domain and its potential usefulness in the design of actual, derived systems. The questionnaires included quantitative Likert scale questions and free text inputs for comments. The development platform was validated in two scopes. As a small-scale experiment, the platform was used in a 12 hours training session where 4 developers had to perform an exercise consisting in developing a set of typical pHealth use cases At the end of the session, a focus group was held to identify benefits and drawbacks of the platform. The second validation was held as a test-case study in a large scale research project called HeartCycle the aim of which was to develop a closed-loop disease management system for heart failure and coronary heart disease patients [160]. During this project three applications were developed by a team of programmers and designers. One of these applications was tested in a clinical trial with actual patients. At the end of the project, the team was interviewed in a focus group to assess the role the platform had within the project. Results For what regards the model that describes the pHealth domain, its conceptual part includes a description of the main roles and concerns of pHealth stakeholders, a model of the ICT artefacts that are commonly adopted and a model representing the typical data that need to be formalized among pHealth systems. The functional model includes a set of 18 scenarios, divided into assisted person's view, caregiver's view, developer's view, technology and services providers' view and authority's view, and a set of 52 Use Cases grouped in 6 categories: assisted person's activities, system reactions, caregiver's activities, user engagement, developer's activities and deployer's activities. For what concerns the validation of the model, a total of 65 people participated in the online survey providing their level of agreement in all the assessed dimensions and a total of 248 comments on how to improve and complete the model. Participants' background spanned from engineering and software development (70%) to medical specialities (15%), with declared interest in the fields of eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), Personalized Medicine (5%), Personal Health Systems (15%), Medical Informatics (10%) and Biomedical Engineering (8%) with an average of 7.25_4.99 years of experience in these fields. From the analysis of the answers it is possible to observe that the contacted experts considered the model easily readable (average of 1.89_0.79 being 1 the most favourable scoring and 5 the worst), sufficiently abstract (1.99_0.88) and formal (2.13_0.77) for its purpose, with a sufficient coverage of the domain (2.26_0.95), useful for describing the domain (2.02_0.7) and for generating more specific systems (2_0.75) and they reported a partial interest in using the model in their job (2.48_0.91). Thanks to their comments, the model was improved and enriched with concepts that were missing at the beginning, nonetheless it was not possible to prove an improvement among the iterations, due to the diversity of the participants in the three rounds. From the model, a development platform for the pHealth domain was generated called pHealth Patient Platform (pHPP). The platform includes a set of libraries, programming and deployment tools, a tutorial and a sample application. The main four modules of the architecture are: the Data Collection Engine, which allows abstracting sources of information like sensors or external services, mapping data to databases and ontologies, and allowing event-based interaction and filtering, the GUI Engine, which abstracts the user interface in a message-like interaction model, the Workow Engine, which allows programming the application's user interaction ows with graphical workows, and the Rule Engine, which gives developers a simple means for programming the application's logic in the form of \if-then" rules. After the 5 years experience of HeartCycle, partially programmed with pHPP, 5 developers were joined in a focus group to discuss the advantages and drawbacks of the platform. The view that emerged from the training course and the focus group was that the platform is well-suited to the needs of the engineers working in the field, it allowed the separation of concerns among the different specialities and it simplified some common development tasks like data management and asynchronous interaction. Nevertheless, some deficiencies were pointed out in terms of a lack of maturity of some technological choices, and for the absence of some domain-specific tools, e.g. for data processing or for health-related communication protocols. Within HeartCycle, the platform was used to develop part of the Guided Exercise system, a composition of ICT tools for the physical rehabilitation of patients who suffered from myocardial infarction. The system developed using the platform was tested in a randomized controlled clinical trial, in which 55 patients used the system for 21 weeks. The technical results of this trial showed that the system was stable and reliable. Some minor bugs were detected, but these were promptly corrected using the platform. This shows that the platform, as well as facilitating the development task, can be successfully used to produce reliable software. Conclusions The research work carried out in developing this thesis provides responses to the three three research questions that were the motivation for the work. RQ1 A model was developed representing the domain of personalised health systems, and the assessment of experts in the field was that it represents the domain accurately, with an appropriate balance between abstraction and detail. RQ2 A development platform based on the model was successfully developed. RQ3 The platform has been shown to assist developers create complex pHealth software. This was demonstrated within the scope of one large-scale project, but the generic approach adopted provides indications that it would offer benefits more widely. The results of these evaluations provide indications that both the model and the platform are good candidates for being a reference for future pHealth developments.
Resumo:
Objective: This study assessed the efficacy of a closed-loop (CL) system consisting of a predictive rule-based algorithm (pRBA) on achieving nocturnal and postprandial normoglycemia in patients with type 1 diabetes mellitus (T1DM). The algorithm is personalized for each patient’s data using two different strategies to control nocturnal and postprandial periods. Research Design and Methods: We performed a randomized crossover clinical study in which 10 T1DM patients treated with continuous subcutaneous insulin infusion (CSII) spent two nonconsecutive nights in the research facility: one with their usual CSII pattern (open-loop [OL]) and one controlled by the pRBA (CL). The CL period lasted from 10 p.m. to 10 a.m., including overnight control, and control of breakfast. Venous samples for blood glucose (BG) measurement were collected every 20 min. Results: Time spent in normoglycemia (BG, 3.9–8.0 mmol/L) during the nocturnal period (12 a.m.–8 a.m.), expressed as median (interquartile range), increased from 66.6% (8.3–75%) with OL to 95.8% (73–100%) using the CL algorithm (P<0.05). Median time in hypoglycemia (BG, <3.9 mmol/L) was reduced from 4.2% (0–21%) in the OL night to 0.0% (0.0–0.0%) in the CL night (P<0.05). Nine hypoglycemic events (<3.9 mmol/L) were recorded with OL compared with one using CL. The postprandial glycemic excursion was not lower when the CL system was used in comparison with conventional preprandial bolus: time in target (3.9–10.0 mmol/L) 58.3% (29.1–87.5%) versus 50.0% (50–100%). Conclusions: A highly precise personalized pRBA obtains nocturnal normoglycemia, without significant hypoglycemia, in T1DM patients. There appears to be no clear benefit of CL over prandial bolus on the postprandial glycemia
Resumo:
High power density is strongly preferable for the on-board battery charger of Plug-in Hybrid Electric Vehicle (PHEV). Wide band gap devices, such as Gallium Nitride HEMTs are being explored to push to higher switching frequency and reduce passive component size. In this case, the bulk DC link capacitor of AC-DC Power Factor Correction (PFC) stage, which is usually necessary to store ripple power of two times the line frequency in a DC current charging system, becomes a major barrier on power density. If low frequency ripple is allowed in the battery, the DC link capacitance can be significantly reduced. This paper focuses on the operation of a battery charging system, which is comprised of one Full Bridge (FB) AC-DC stage and one Dual Active Bridge (DAB) DC-DC stage, with charging current containing low frequency ripple at two times line frequency, designated as sinusoidal charging. DAB operation under sinusoidal charging is investigated. Two types of control schemes are proposed and implemented in an experimental prototype. It is proved that closed loop current control is the better. Full system test including both FB AC-DC stage and DAB DC-DC stage verified the concept of sinusoidal charging, which may lead to potentially very high power density battery charger for PHEV.
Resumo:
Ripple-based controls can strongly reduce the required output capacitance in PowerSoC converter thanks to a very fast dynamic response. Unfortunately, these controls are prone to sub-harmonic oscillations and several parameters affect the stability of these systems. This paper derives and validates a simulation-based modeling and stability analysis of a closed-loop V 2Ic control applied to a 5 MHz Buck converter using discrete modeling and Floquet theory to predict stability. This allows the derivation of sensitivity analysis to design robust systems. The work is extended to different V 2 architectures using the same methodology.
Resumo:
Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and precise operation of the collimators is critical for the machine, requiring the prevention of step loss in the motors and maintenance to be foreseen in case of mechanical degradation. In order to make the above possible, an approach is proposed for the application of an Extended Kalman Filter to a sensorless stepper motor drive, when the motor is separated from its drive by long cables. When the long cables and high frequency pulse width modulated control voltage signals are used together, the electrical signals difer greatly between the motor and drive-side of the cable. Since in the considered case only drive-side data is available, it is therefore necessary to estimate the motor-side signals. Modelling the entire cable and motor system in an Extended Kalman Filter is too computationally intensive for standard embedded real-time platforms. It is, in consequence, proposed to divide the problem into an Extended Kalman Filter, based only on the motor model, and separated motor-side signal estimators, the combination of which is less demanding computationally. The efectiveness of this approach is shown in simulation. Then its validity is experimentally demonstrated via implementation in a DSP based drive. A testbench to test its performance when driving an axis of a Large Hadron Collider collimator is presented along with the results achieved. It is shown that the proposed method is capable of achieving position and load torque estimates which allow step loss to be detected and mechanical degradation to be evaluated without the need for physical sensors. These estimation algorithms often require a precise model of the motor, but the standard electrical model used for hybrid stepper motors is limited when currents, which are high enough to produce saturation of the magnetic circuit, are present. New model extensions are proposed in order to have a more precise model of the motor independently of the current level, whilst maintaining a low computational cost. It is shown that a significant improvement in the model It is achieved with these extensions, and their computational performance is compared to study the cost of model improvement versus computation cost. The applicability of the proposed model extensions is demonstrated via their use in an Extended Kalman Filter running in real-time for closed-loop current control and mechanical state estimation. An additional problem arises from the use of stepper motors. The mechanics of the collimators can wear due to the abrupt motion and torque profiles that are applied by them when used in the standard way, i.e. stepping in open-loop. Closed-loop position control, more specifically Field Oriented Control, would allow smoother profiles, more respectful to the mechanics, to be applied but requires position feedback. As mentioned already, the use of sensors in radioactive environments is very limited for reliability reasons. Sensorless control is a known option but when the speed is very low or zero, as is the case most of the time for the motors used in the LHC collimator, the loss of observability prevents its use. In order to allow the use of position sensors without reducing the long term reliability of the whole system, the possibility to switch from closed to open loop is proposed and validated, allowing the use of closed-loop control when the position sensors function correctly and open-loop when there is a sensor failure. A different approach to deal with the switched drive working with long cables is also presented. Switched mode stepper motor drives tend to have poor performance or even fail completely when the motor is fed through a long cable due to the high oscillations in the drive-side current. The design of a stepper motor output fillter which solves this problem is thus proposed. A two stage filter, one devoted to dealing with the diferential mode and the other with the common mode, is designed and validated experimentally. With this ?lter the drive performance is greatly improved, achieving a positioning repeatability even better than with the drive working without a long cable, the radiated emissions are reduced and the overvoltages at the motor terminals are eliminated.
Resumo:
El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.