959 resultados para catalytic properties


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mechanistic model for lactose/H+ symport via the lactose permease of Escherichia coli proposed recently indicates that the permease must be protonated to bind ligand with high affinity. Moreover, in the ground state, the symported H+ is shared between His-322 (helix X) and Glu-269 (helix VIII), whereas Glu-325 (helix X) is charge-paired with Arg-302 (helix IX). Substrate binding at the outer surface induces a conformational change that leads to transfer of the H+ to Glu-325 and reorientation of the binding site to the inner surface. After release of the substrate, Glu-325 is deprotonated on the inside because of rejuxtapositioning with Arg-302. To test the role of Arg-302 in the mechanism, the catalytic properties of mutants Arg-302→Ala and Arg-302→Ser were studied. Both mutants are severely defective in active lactose transport, as well as in efflux or influx down a concentration gradient, translocation modes that involve net H+ movement. In marked contrast, the mutants catalyze equilibrium exchange of lactose and bind ligand with high affinity. These characteristics are remarkably analogous to those of permease mutants with neutral replacements for Glu-325, a residue that plays a direct role in H+ translocation. These observations lend strong support for the argument that Arg-302 interacts with Glu-325 to facilitate deprotonation of the carboxylic acid during turnover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally flat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration–rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-fledged mineral commodities, the use of which promise to expand even more in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isoprene synthase is the enzyme responsible for the foliar emission of the hydrocarbon isoprene (2-methyl-1,3-butadiene) from many C3 plants. Previously, thylakoid-bound and soluble forms of isoprene synthase had been isolated separately, each from different plant species using different procedures. Here we describe the isolation of thylakoid-bound and soluble isoprene synthases from a single willow (Salix discolor L.) leaf-fractionation protocol. Willow leaf isoprene synthase appears to be plastidic, with whole-leaf and intact chloroplast fractionations yielding approximately equal soluble (i.e. stromal) and thylakoid-bound isoprene synthase activities. Although thylakoid-bound isoprene synthase is tightly bound to the thylakoid membrane (M.C. Wildermuth, R. Fall [1996] Plant Physiol 112: 171–182), it can be solubilized by pH 10.0 treatment. The solubilized thylakoid-bound and stromal isoprene synthases exhibit similar catalytic properties, and contain essential cysteine, histidine, and arginine residues, as do other isoprenoid synthases. In addition, two regulators of foliar isoprene emission, leaf age and light, do not alter the percentage of isoprene synthase activity in the bound or soluble form. The relationship between the isoprene synthase isoforms and the implications for function and regulation of isoprene production are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cleavage of RNA can be accelerated by a number of factors. These factors include an acidic group (Lewis acid) or a basic group that aids in the deprotonation of the attacking nucleophile, in effect enhancing the nucleophilicity of the nucleophile; an acidic group that can neutralize and stabilize the leaving group; and any environment that can stabilize the pentavalent species that is either a transition state or a short-lived intermediate. The catalytic properties of ribozymes are due to factors that are derived from the complicated and specific structure of the ribozyme–substrate complex. It was postulated initially that nature had adopted a rather narrowly defined mechanism for the cleavage of RNA. However, recent findings have clearly demonstrated the diversity of the mechanisms of ribozyme-catalyzed reactions. Such mechanisms include the metal-independent cleavage that occurs in reactions catalyzed by hairpin ribozymes and the general double-metal-ion mechanism of catalysis in reactions catalyzed by the Tetrahymena group I ribozyme. Furthermore, the architecture of the complex between the substrate and the hepatitis delta virus ribozyme allows perturbation of the pKa of ring nitrogens of cytosine and adenine. The resultant perturbed ring nitrogens appear to be directly involved in acid/base catalysis. Moreover, while high concentrations of monovalent metal ions or polyamines can facilitate cleavage by hammerhead ribozymes, divalent metal ions are the most effective acid/base catalysts under physiological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fructans play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Sucrose:fructan 6-fructosyltransferase (6-SFT), an enzyme catalyzing the formation and extension of beta-2,6-linked fructans typical of grasses, was purified from barley (Hordeum vulgare L.). It occurred in two closely similar isoforms with indistinguishable catalytic properties, both consisting of two subunits with apparent masses of 49 and 23 kDa. Oligonucleotides, designed according to the sequences of tryptic peptides from the large subunit, were used to amplify corresponding sequences from barley cDNA. The main fragment generated was cloned and used to screen a barley cDNA expression library. The longest cDNA obtained was transiently expressed in Nicotiana plumbaginifolia protoplasts and shown to encode a functional 6-SFT. The deduced amino acid sequence of the cDNA comprises both subunits of 6-SFT. It has high similarity to plant invertases and other beta-fructosyl hydrolases but only little to bacterial fructosyltransferases catalyzing the same type of reaction as 6-SFT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanopartículas bimetálicas de AuPd têm mostrado excelente atividade catalítica em reações de oxidação. O entendimento dos efeitos da variação da composição e morfologia das nanopartículas bimetálicas em suas propriedades catalíticas é fundamental para a preparação de catalisadores cada vez mais ativos e seletivos. Neste trabalho foram estudadas nanopartículas bimetálicas de AuPd de composição variável suportadas sobre um suporte constituído por nanopartículas de magnetita revestidas por sílica. O efeito da calcinação e da redução com hidrogênio sobre a morfologia e composição das nanopartículas bimetálicas foi acompanhado pelas técnicas de TEM, XEDS, XAS, XRD e XPS. A correlação entre estrutura, composição e atividade catalítica dos catalisadores preparados foi estudada pelo acompanhamento de reações de oxidação de monóxido de carbono e de oxidação de álcool benzílico. As amostras não calcinadas apresentaram segregação metálica em todas as composições estudadas. Após a etapa de calcinação, maior segregação metálica foi encontrada, com a formação de óxido de paládio na superfície das nanopartículas, exceto na amostra mais rica em ouro. O tratamento das amostras oxidadas com hidrogênio foi capaz de reduzir os metais oxidados na superfície das nanopartículas, mas um enriquecimento em paládio na superfície e maior segregação entre ouro e paládio foram observados. Uma melhora na atividade catalítica na oxidação de monóxido de carbono foi observada juntamente com um aumento na composição de paládio, além disso, observou-se uma maior atividade catalítica em relação às nanopartículas não calcinadas para as amostras calcinadas e reduzidas. Para a oxidação de álcool benzílico um aumento na atividade catalítica de até cinco vezes foi observado após a calcinação dos catalisadores, com maior atividade para a amostra de composição Au1Pd2. A queda na atividade catalítica após a redução dos catalisadores mostrou que a presença de óxido de paládio na superfície das nanopartículas é fundamental para que seja observada uma maior atividade catalítica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colloidal gold nanoparticles were synthesized by different procedures affording suspensions with two different mean sizes (2 and 5 nm). Au catalysts were prepared by sol immobilization onto several silica frameworks with different 2D and 3D mesoporosities. The catalysts were tested in styrene oxidation reactions showing excellent efficiency and selectivity. The effect of nanoparticle size and mesoporous framework on the physical and catalytic properties of the final materials was studied. The most selective catalyst was prepared from the 5 nm Au nanoparticles and the more interconnected silica framework (3D mesoporosity).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study on the preparation of thin films of ZSM-5 and BETA zeolites, and a SAPO-5 silicoaluminophosphate, supported on cordierite honeycomb monoliths by in situ synthesis was carried out for their use as catalyst supports. Furthermore γ-Al2O3 was also coated onto a cordierite honeycomb monolith by a dip-coating method for use as a standard support. Structured monolithic catalysts were prepared by impregnation of the aforementioned coated monoliths with polymer-protected Pd nanoparticles. The monolithic catalysts have been tested for the total oxidation of naphthalene (100 ppm, GHSV 1220 h−1). From the combined use of the zeolite with polymer-protected nanoparticles, enhanced catalytic properties have been found for the total abatement of naphthalene. The Pd/MBETA and Pd/MZSM-5 catalytic monoliths have shown excellent activity with a high degree of stability, even after undergoing accelerated ageing experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A great deal of effort has been made at searching for alternative catalysts to replace conventional Lewis acid catalyst aluminum trichloride (AlCl3). In this paper, immobilization of AlCl3 on mesoporous MCM-41 silica with and without modification was carried out. The catalytic properties of the immobilized catalyst systems for liquid-phase isopropylation of naphthalene were studied and compared with those of H/MCM-41 and H/mordenite. The structures of the surface-immobilized aluminum chloride catalysts were studied and identified by using solid-state magic angle spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption, and X-ray diffraction (XRD) techniques. The catalytic activity of the immobilized catalysts was found to be similar to that of acidic mordenite zeolite. A significant enhancement in the selectivity of 2,6-diisopropylnaphthalene (2,6-DIPN) was observed over the immobilized aluminum chloride catalysts. Immobilization of aluminum chloride on mesoporous silica coupled with surface silylation is a promising way of developing alternative catalyst system for liquid-phase Friedel-Crafts alkylation reactions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K (M)=1.84 +/- 0.09 mM and k (cat) of 2.98 +/- 0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K (M)=0.65 +/- 0.08 mM and k (cat) of 0.95 +/- 0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low energy route for the removal of Pluronic P123 surfactant template during the synthesis of SBA-15 mesoporous silicas is explored. The conventional reflux of the hybrid inorganic-organic intermediate formed during co-condensation routes to Pr-SOH-SBA-15 is slow, utilises large solvent volumes, and requires 24 h to remove ∼90% of the organic template. In contrast, room temperature ultrasonication in a small methanol volume achieves the same degree of template extraction in only 5 min, with a 99.9% energy saving and 90% solvent reduction, without compromising the textural, acidic or catalytic properties of the resultant Pr-SOH-SBA-15. © 2014 The Royal Society of Chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zirconium-containing periodic mesoporous organosilicas (Zr-PMOs) with varying framework organic content have been synthesized through a direct synthesis method. These materials display the excellent textural properties of the analogous inorganic solid acid Zr-SBA-15 material. However, the substitution of silica by organosilicon species provides a strong hydrophobic character. This substitution leads to meaningful differences in the environment surrounding the zirconium metal sites, leading the modification of the catalytic properties of these materials. Although lower metal incorporation is accomplished in the final materials, leading to a lower population of metal sites, hydrophobisation leads to an impressive beneficial effect on the intrinsic catalytic activity of the zirconium sites in biodiesel production by esterification/transesterification of free fatty acid -containing feedstock. Moreover, the catalytic activity of the highly hybridised materials is hardly affected in presence of large amounts of water, confirming their very good water-tolerance. This makes Zr-PMO materials interesting catalysts for biodiesel production from highly acidic water-containing feedstock. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.