964 resultados para canopy interception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Published by the State of California under terms of a cooperative agreement with the California Forest and Range Experiment Station, U. S. Forest Service."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract no. AF 33(616)-2859."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf area growth and nitrogen concentration per unit leaf area, N-a (g m(-2) N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot(-1)) and five rates (0.5-6.0 g pot(-1)) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, P a,, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (N-a or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between P-max and N-a. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the practical issue of using thermal image data without adjustment or calibration for projects which do not require actual temperatures per se. Large scale airborne scanning in the thermal band at 8.5–13 μm was obtained for a mangrove and salt marsh in subtropical eastern Australia. For open sites, the raw image values were strongly positively correlated with ground level temperatures. For sites under mangrove canopy cover, image values indicated temperatures 2–4°C lower than those measured on the ground. The raw image was useful in identifying water bodies under canopy and has the potential for locating channel lines of deeper water. This could facilitate modification to increase flushing in the system, thereby reducing mosquito larval survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar delta C-13, but epiphytes had more extreme values; this indicates that both groups of plants use the C-3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early work has shown variation in the grain yield of rice cultivars grown under water stress conditions to be associated with the plant water status, mainly with the maintenance of high leaf water potential (LWP) at flowering and grain filling stage. Considerable variation for LWP among rice varieties has been recorded. The present work was designed to investigate genotypic consistency in water potential within the plant and under canopy manipulation to vary plant water requirement. In a glasshouse experiment, with six rice genotypes, a consistent water potential gradient from stem base to leaf tip has been observed. Leaf tip water potential has been found as the minimum LWP that can be recorded at any time of stress. Genotypes with similar canopy size could maintain different levels of LWP under stress conditions. In a field experiment, with four selected lines, four canopy sizes and two canopy mixture treatments were introduced prior to the imposition of control, mild and severe water stress conditions. It was found that the line differences in LWP and relative water content (RWC) were expressed under both mild and severe stress conditions, regardless of canopy size, tiller number and whether they were mixed with another line with different capacity to maintain LWP. Although there were some differences among canopy size treatments for radiation interception in three water conditions, canopy manipulation (plant size) within a line did not affect the expression of LWP and hence genotypic variation in LWP was maintained. Under both glasshouse and field conditions, lines that maintained high LWP had larger xylem diameter and stem areas than those that had low LWP. The results indicated that the size of the vascular bundles could influence the maintenance of plant water relations under water deficit. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (K-s), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stern hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced midday loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.