914 resultados para cannabinoid receptor 1
Resumo:
α1-肾上腺素受体(α1-Adrenergic receptor,α1-AR)是G蛋白偶联受体(G-protein coupled receptor,GPCR),也是内源性儿茶酚胺、去甲肾上腺素和肾上腺素最重要的靶受体之一.α1-AR广泛分布于机体的各种器官、组织和细胞中,并介导多种生理效应,如血管收缩、蛋白质合成及心脏变力变时作用等[1,2].很多研究已经证实,α1-AR及其信号转导通路与许多心血管疾病存在密切关系[3,4].蛋白质组学可提供一种发现在疾病情况下异常表达蛋白质的方法,为疾病的早期诊断和愈后判断提供指南,并为针对性疾病治疗提供科学依据.本研究以乳鼠心肌细胞为实验模型,利用双向凝胶电泳和飞行时间质谱分析苯肾上腺素诱导乳鼠心肌细胞表达变化的蛋白质.1实验部分1.1试剂苯肾上腺素(Phenylephine,PE)购自Sigma公司;胰蛋白酶和DMEM购自Hyclone公司;IPG预制胶条(pH=5~8,胶条长17 cm),载体两性电解质(B io-Lyte5-8)购于B io-Rad公司;TPCK修饰的测序级胰酶购自Promega公司;其它试剂均为国产分析纯.1.2实验过程(1)乳鼠心肌细胞培养及样...
Resumo:
大部分贝类幼虫在发育过中要经历从浮游生活到底栖生活的变化过程,同时形态结构也要经历巨大的变化,这个过程称为变态。 变态是文蛤幼虫发育过程中非常重要的一个阶段。 药理学和细胞免疫学证据表明β肾上腺素样受体在文蛤幼虫变态过程中有重要作用。药理学实验分别采用了几种儿茶酚胺类受体的激动剂和抑制剂来处理幼虫,检验它们在幼虫变态过程中的作用。结果表明,在10μM和100μM的浓度下,肾上腺素(AD)和去甲肾上腺素(NA)中能够显著提高幼虫的变态率(p<0.05)。10μM和100μM浓度的AD能够提高幼虫变态率30%左右。10μM和100μM浓度的NA能分别提高幼虫变态率35.3%和27.6%。10μM的β受体激动剂-isoproterenol也能够显著的提高幼虫的变态率30%(p<0.05),但是α受体激动剂-phenylephrine在0.1μM到100μM的浓度范围内不能显著提高幼虫的变态率(p>0.05)。而且,1μM的β受体抑制剂-propanolol能显著的抑制AD或NA提高幼虫变态率的作用(p<0.05);但是α受体抑制剂-prazosin对AD或NA提高幼虫变态率没有显著性影响(p>0.05)。 此外本文还利用整装免疫细胞化学的方法进一步研究了文蛤幼虫不同发育阶段,神经系统和β肾上腺素样受体的发育情况。 幼虫的神经系统在担轮幼虫时期(受精后18h)开始发育,这时还不能检测到β肾上腺素受体。面盘幼虫时期(受精后1d)具备了顶神经节、脑神经节和脏神经节组成的中枢神经系统,在口附近有一些外周神经。β肾上腺素受体在受精后24h首次出现在面盘幼虫的顶神经节和脑神经节,分别命名为AR(apical receptor)和CR1(cerebral receptor 1)。 在受精后5d顶神经节已经检测不到。脑神经节和脏神经节由腹部向背部迁移,口的背腹两侧都出现了一些神经元。并且脏神经节周围也出现了一些神经细胞。AR在受精后3d就检测不到了。同时在CR1的后部新出现了一些β肾上腺素受体,命名为CR2。此后CR2发育迅速,在受精后5d就和CR1差不多大小。并且在CR1和CR2之间还出现了很多小的阳性信号。 变态过程中中枢神经系统中顶神经节消失了,并且出现了足神经节。另外,外套膜上出现了更多的外周神经。除了在稚贝的脑神经节和脏神经节外,在足、外套膜和水管上都有β肾上腺素受体存在。成体的鳃、足、心脏、水管、唇掰和外套膜上也有β肾上腺素受体分布。 变态信号传递到靶器官后,文蛤幼虫在形态结构和生态习性上开始了快速巨大的变化。其中幼虫的肌肉系统是变化最大的系统,并且直接与文蛤运动、摄食等习性转变相关。本文采用免疫组化的方法对文蛤幼虫肌肉系统的发育进行了研究。结果表明,文蛤幼虫具有由幼虫收缩肌、面盘收缩肌和闭壳肌组成的十分复杂的肌肉系统。幼虫收缩肌和前闭壳肌最早出现于担轮幼虫阶段(受精后18h)。孵化后幼虫的肌肉系统迅速发育,受精后22h幼虫的肌肉系统基本发育完全,并一直维持到变态前。变态过程中幼虫收缩肌和面盘收缩肌逐渐萎缩消失。同时,足收缩肌、后闭壳肌和外套膜肌肉等稚贝的肌肉系统快速形成。变态后稚贝幼虫收缩肌和面盘收缩肌完全消失,其肌肉系统由前后闭壳肌、足收缩肌和外套膜肌肉组成。
Resumo:
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Resumo:
Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.
Resumo:
Decreased survival in patients with cystic fibrosis has been related to FEV1, BMI, and infection with Burkholderia cepacia complex (BCC). We have assessed the relationship of blood, sputum, and urine inflammatory markers to lung function, BMI, colonization with B cenocepacia (Bc), and patient survival. Thirty-nine stable cystic fibrosis (CF) patients (10 with Bc) were enrolled in a study to determine the effect of alpha-1-antitrypsin on airways inflammation. Pre-treatment measurements were used in this study. Demographics, sputum microbiology, heart rate, oxygen saturation, lung function were recorded. Blood samples were obtained for white blood count (WBC), C-Reactive Protein (CRP), and plasma neutrophil elastase/AAT complexes (pNEC). Neutrophil elastase (NE), neutrophil elastase/AAT complexes (sNEC), interleukin-8 (IL-8), TNF-receptor 1 (sTNFr), and myeloperoxidase (MPO) were measured in sputum and urinary desmosine concentration determined. Patients with Bc had significantly higher levels of pNEC, 332?±?91.4 ng/ml (mean?±?SEM) versus 106?±?18.2 ng/ml (P?=?0.0005) and sNEC, 369?±?76.6 ng/ml versus 197?±?36.0 ng/ml compared to those who were not. Five deaths were reported at the end of 1 year, (four with Bc) (P?=?0.011). Patients who subsequently died had significantly lower lung function FEV1, 1.2?±?0.2 L versus 2.0?±?0.1 L (P?=?0.03) and FVC, 2?±?0.3 L versus 3.1?±?0.2 L (P?=?0.01), compared to those that survived. There was significantly higher NE activity, 3.6?±?1.6 U/ml versus 1.5?±?0.6 U/ml (P?=?0.03), pNEC, 274?±?99 ng/ml versus 142?±?30 ng/ml (P?=?0.05), MPO, 163?±?62 mcg/ml versus 54?±?6.9 mcg/ml (P?=?0.03), and urinary desmosines 108?±?19.9 pM/mg creatinine versus 51.1?±?3.3 pM/mg creatinine (P?=?0.001), in those patients who subsequently died compared to those that survived. These data suggest there is increased neutrophil degranulation in patients infected with Bc and these patients have a poor outcome.
Resumo:
GPR40 was formerly an orphan G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs). The receptor, now named FFA receptor 1, has been implicated in the pathophysiology of type 2 diabetes and is a drug target because of its role in FFA-mediated enhancement of glucose-stimulated insulin release. Guided by molecular modeling, we investigated the molecular determinants contributing to binding of linoleic acid, a C18 polyunsaturated FFA, and GW9508, a synthetic small molecule agonist. Twelve residues within the putative GPR40-binding pocket including hydrophilic/positively charged, aromatic, and hydrophobic residues were identified and were subjected to site-directed mutagenesis. Our results suggest that linoleic acid and GW9508 are anchored on their carboxylate groups by Arg183, Asn244, and Arg258. Moreover, His86, Tyr91, and His137 may contribute to aromatic and/or hydrophobic interactions with GW9508 that are not present, or relatively weak, with linoleic acid. The anchor residues, as well as the residues Tyr12, Tyr91, His137, and Leu186, appear to be important for receptor activation also. Interestingly, His137 and particularly His86 may interact with GW9508 in a manner dependent on its protonation status. The greater number of putative interactions between GPR40 and GW9508 compared with linoleic acid may explain the higher potency of GW9508.
Resumo:
Irreversible tissue damage within the cystic fibrosis (CF) lung is mediated by proteolytic enzymes during an inflammatory response. Serine proteinases, in particular neutrophil elastase (NE), have been implicated however, members of the cysteine proteinase family may also be involved. The aim of this study was to determine cathepsin B and S levels in cystic fibrosis (CF) sputum and to assess any relationship to recognized markers of inflammation such as sputum NE, interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-a), urine TNF receptor 1 (TNFr1), plasma IL-6, and serum C-reactive protein (CRP). Proteinase activities were measured in the sputum of 36 clinically stable CF patients using spectrophotometric and fluorogenic assays. Immunoblots were also used to confirm enzyme activity data. All other parameters were measured by ELISA. Patients had a mean age of 27.2 (8.2) years, FEV. of 1.6 (0.79) L and BMI of 20.7 (2.8). Both cathepsin B and S activities were detected in all samples, with mean concentrations of 18.0 (13.5)?µg/ml and 1.6 (0.88)?µg/ml, respectively and were found to correlate not only with each other but with NE, TNF-a and IL-8 (in all cases .?<?0.05). Airway cathepsin B further correlated with circulatory IL-6 and CRP however, no relationship for either cathepsin was observed with urine TNFr1. This data indicates that cathepsin B and S may have important roles in the pathophysiology of CF lung disease and could have potential as markers of inflammation in future studies. Pediatr. Pulmonol. 2010; 45:860–868.
Resumo:
Recent societal acceptance of cannabinoids as recreational and therapeutic drugs has posed a potential hazard to male reproductive health. Mammals have a highly sophisticated endogenous cannabinoid (ECS) system that regulates male (and female) reproduction and exo-cannabinoids may influence it adversely. Therefore it is imperative to determine their effects on male reproduction so that men can make informed choices as to their use. Here, an animal model was used to administer HU210, a synthetic analogue of ?9-tetrahydrocannabinol (THC) and potent cannabinoid receptor (CB) agonist to determine its effects on reproductive organ weights, spermatogenesis, testicular histology and sperm motility. Its effects on the physiological endocannabinoid system were also investigated. Spermatogenesis was markedly impaired with reductions in total sperm count after 2 weeks of exposure. Spermatogenic efficiency was depleted, and Sertoli cell number decreased as exposure time increased with seminiferous tubules showing germ cell depletion developing into atrophy in some cases. Sperm motility was also adversely affected with marked reductions from 2 weeks on. HU210 also acted on the sperm’s endocannabinoid system. Long term use of exo-cannabinoids has adverse effects on both spermatogenesis and sperm function. These findings highlight the urgent need for studies evaluating the fertility potential of male recreational drug users.
Resumo:
The pH-dependent fluorescence behavior of two regioisomeric 'receptor(1)-spacer(1)-fluorophore-spacer(2)-receptor(2)' systems 1 and 2 in micellar solutions of sodium dodecyl sulfate show that photoinduced electron transfer (PET) only occurs from the amine group connected to the 4-amino position of the aminonaphthalimide fluorophore in both cases. This demonstrates the directing influence of the photogenerated electric field within the aminonaphthalimide excited state on the electron transfer process. Since path-selectivity of PET is also known within the membrane-bound photosynthetic reaction center in bacteria, its origins may be illuminated by the simple experiments described here. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
GPR40, free fatty acid receptor 1 (FFAR1), is a member of the GPCR superfamily and a possible target for the treatment of type 2 diabetes. In this work, we conducted a bidirectional iterative investigation, including computational modeling and site-directed mutagenesis, aimed at delineating amino acid residues forming the functional "chemoprint" of GPR40 for agonist recognition. The computational and experimental studies revolved around the recognition of the potent synthetic agonist GW9508. Our experimentally supported model suggested that H137(4.56), R183(5.39), N244(6.55), and R258(7.35) are directly involved in interactions with the ligand. We have proposed a polarized NH-pi interaction between H137(4.56) and GW9508 as one of the contributing forces leading to the high potency of GW9508. The modeling approach presented in this work provides a general strategy for the exploration of receptor-ligand interactions in G-protein coupled receptors beginning prior to acquisition of experimental data.
Resumo:
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 degrees C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.