253 resultados para cGMP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels present a unique model for studying the molecular mechanisms of channel gating. We have studied the mechanism of potentiation of expressed rod CNG channels by Ni2+ as a first step toward understanding the channel gating process. Here we report that coordination of Ni2+ between histidine residues (H420) on adjacent channel subunits occurs when the channels are open. Mutation of H420 to lysine completely eliminated the potentiation by Ni2+ but did not markedly alter the apparent cGMP affinity of the channel, indicating that the introduction of positive charge at the Ni(2+)-binding site was not sufficient to produce potentiation. Deletion or mutation of most of the other histidines present in the channel did not diminish potentiation by Ni2+. We studied the role of subunit interactions in Ni2+ potentiation by generating heteromultimeric channels using tandem dimers of the rod CNG channel sequence. Injection of single heterodimers in which one subunit contained H420 and the other did not (wt/H420Q or H420Q/wt) resulted in channels that were not potentiated by Ni2+. However, coinjection of both heterodimers into Xenopus oocytes resulted in channels that exhibited potentiation. The H420 residues probably occurred predominantly in nonadjacent subunits when each heterodimer was injected individually, but, when the two heterodimers were coinjected, the H420 residues could occur in adjacent subunits as well. These results suggest that the mechanism of Ni2+ potentiation involves intersubunit coordination of Ni2+ by H420. Based on the preferential binding of Ni2+ to open channels, we suggest that alignment of H420 residues of neighboring subunits into the Ni(2+)-coordinating position may be associated with channel opening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-dependent PDE family designated as PDE1C. This enzyme shows high affinity for cAMP and cGMP, having a Km for cAMP much lower than that of any other neuronal Ca2+/calmodulin-dependent PDE. The mRNA encoding this enzyme is highly enriched in olfactory epithelium and is not detected in six other tissues tested. However, RNase protection analyses indicate that other alternative splice variants related to this enzyme are expressed in several other tissues. Within the olfactory epithelium, this enzyme appears to be expressed exclusively in the sensory neurons. The high affinity for cAMP of this Ca2+/calmodulin-dependent PDE and the fact that its mRNA is highly concentrated in olfactory sensory neurons suggest an important role for it in a Ca(2+)-regulated olfactory signal termination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to mediate increases in regional cerebral blood flow elicited by CO2 inhalation. In mice with deletion of the gene for neuronal NO synthase (NOS), CO2 inhalation augments cerebral blood flow to the same extent as in wild-type mice. However, unlike wild-type mice, the increased flow in mutants is not blocked by the NOS inhibition, N omega-nitro-L-arginine, and CO2 exposure fails to increase brain levels of cGMP. Topical acetylcholine elicits vasodilation in the mutants which is blocked by N omega-nitro-L-arginine, indicating normal functioning of endothelial NOS. Moreover, immunohistochemical staining for endothelial NOS is normal in the mutants. Thus, following loss of neuronal NOS, the cerebral circulatory response is maintained by a compensatory system not involving NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the membrane guanylyl cyclases (GCs), RetGC, is expressed predominantly in photoreceptors. No extracellular ligand has been described for RetGC, but it is sensitive to activation by a soluble 24-kDa protein (p24) and is inhibited by Ca2+. This enzyme is, therefore, thought to play a role in resynthesizing cGMP for photoreceptor recovery or adaptation. By screening a human retinal cDNA library at low stringency with the cytoplasmic domains from four cyclases, we cloned cDNAs encoding a membrane CG that is most closely related to RetGC. We have named this GC RetGC-2, and now term the initially described RetGC RetGC-1. By in situ hybridization, mRNA encoding RetGC-2 is found only in the outer nuclear layer and inner segments of photoreceptor cells. By using synthetic peptide antiserum specific for each RetGC subtype, RetGC-2 can be distinguished from RetGC-1 as a slightly smaller protein in immunoblots of bovine rod outer segments. Membrane GC activity of recombinant RetGC-2 expressed in human embryonic kidney 293 cells is stimulated by the activator p24 and is inhibited by Ca2+ with an EC50 value of 50-100 nM. Our data reveal a previously unappreciated diversity of photoreceptor GCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH diaphorase (NADPH dehydrogenase; EC 1.6.99.1) histochemistry labels neurons that synthesize the neurotransmitter nitric oxide (NO). In retina, it has been demonstrated that NO can affect the metabolism of cGMP in rod photoreceptors. To investigate potential involvement of NO in cone photoreceptor activity, we utilized NADPH diaphorase histochemistry to study the cone-dominated retina of the tree shrew (Tupaia belangeri). Unexpectedly, our results revealed different NADPH diaphorase activity in the cellular subcompartments of the spectral classes of cone photoreceptors. Although all cones showed intense labeling of inner segment ellipsoids, the short-wavelength-sensitive (SWS or "blue-sensitive") cones and the rods displayed intense staining of the myoid inner segment subcompartment as well. Furthermore, only SWS cones and rods displayed surface labeling of their nuclei. These findings indicate a manner in which SWS cones differ biochemically from other cone types and in which they are more similar to rods. Such differences may underlie some of the unusual functional properties of the SWS cone system, which have been attributed to postreceptoral processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection with enterotoxigenic Escherichia coli is a leading cause of traveler's diarrhea. Many enterotoxigenic E. coli strains produce heat-stable enterotoxin (ST), a peptide that binds to the intestinal receptor guanylyl cyclase C known as STaR. The toxin-receptor interaction elevates intracellular cGMP, which then activates apical chloride secretion, resulting in secretory diarrhea. In this report, we examine how the intracellular domains of STaR participate in the propagation and regulation of signaling. We show that STaR exists as an oligomer in both the presence and the absence of toxin. We also demonstrate that deletion of the intracellular kinase-homology domain produces a constitutively active mutant, suggesting that this domain subserves an autoinhibitory function. Finally, we constructed a point mutant within a highly conserved region of the cyclase domain that completely inactivates the catalytic activity of guanylyl cyclase. Cotransfection of this point mutant with wild-type receptor causes a dominant-negative effect on receptor activation. This suggests that interaction of receptor subunits is required for toxin-induced activation and that the cyclase domain is involved in this essential interaction. We propose that the binding of ST to STaR promotes a conformational change across the cell membrane. This removes the inhibitory effects of the kinase-homology domain and promotes an interaction between cyclase domains that leads to receptor activation. The data suggest a paradigm of signal transduction that may also be relevant to other members of the guanylyl cyclase receptor family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoblastoma cells in culture have previously been shown to express cone-specific genes but not their rod counterparts. We have detected the messages for the rod alpha, beta, and gamma subunits of cGMP phosphodiesterase (PDE), the rod alpha subunit of transducin, rod opsin, and the cone alpha' subunit of PDE in RNA of human Y-79 retinoblastoma cells by reverse transcription-PCR. Quantitative analysis of the mRNAs for the rod alpha and cone alpha' PDE subunits revealed that they were expressed at comparable levels; however, the transcript encoding the rod beta PDE subunit was 10 times more abundant in these cells. Northern hybridization analysis of Y-79 cell RNA confirmed the presence of the transcripts for rod and cone PDE catalytic subunits. To test whether the transcriptional machinery required for the expression of rod-specific genes was endogenous in Y-79 retinoblastoma cells, cultures were transfected with a construct containing the promoter region of the rod beta PDE subunit gene attached to the firefly luciferase reporter vector. Significant levels of reporter enzyme activity were observed in the cell lysates. Our results demonstrate that the Y-79 retinoblastoma cell line is a good model system for the study of transcriptional regulation of rod-specific genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the gene encoding the beta subunit of rod cGMP phosphodiesterase are known causes of photoreceptor degeneration in two animal models of retinitis pigmentosa, the rd (retinal degeneration) mouse and the Irish setter dog with rod/cone dysplasia. Here we report a screen of 92 unrelated patients with autosomal recessive retinitis pigmentosa for defects in the human homologue of this gene. We identified seven different mutations that cosegregate with the disease. They were found among four patients with each patient heterozygously carrying two mutations. All of these mutations are predicted to affect the putative catalytic domain, probably leading to a decrease in phosphodiesterase activity and an increase in cGMP levels within rod photoreceptors. Mutations in the gene encoding the beta subunit of rod phosphodiesterase are the most common identified cause of autosomal recessive retinitis pigmentosa, accounting for approximately 4% of cases in North America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has previously been shown that alcohol can suppress reproduction in humans, monkeys, and small rodents by inhibiting release of luteinizing hormone (LH). The principal action is via suppression of the release of LH-releasing hormone (LHRH) both in vivo and in vitro. The present experiments were designed to determine the mechanism by which alcohol inhibits LHRH release. Previous research has indicated that the release of LHRH is controlled by nitric oxide (NO). The proposed pathway is via norepinephrine-induced release of NO from NOergic neurons, which then activates LHRH release. In the present experiments, we further evaluated the details of this mechanism in male rats by incubating medial basal hypothalamic (MBH) explants in vitro and examining the release of NO, prostaglandin E2 (PGE2), conversion of arachidonic acid to prostanoids, and production of cGMP. The results have provided further support for our theory of LHRH control. Norepinephrine increased the release of NO as measured by conversion of [14C]arginine to [14C]citrulline, and this increase was blocked by the alpha 1 receptor blocker prazosin. Furthermore, the release of LHRH induced by nitroprusside (NP), a donor of NO, is related to the activation of soluble guanylate cyclase by NO since NP increased cGMP release from MBHs and cGMP also released LHRH. Ethanol had no effect on the production of NO by MBH explants or the increased release of NO induced by norepinephrine. Therefore, it does not act at that step in the pathway. Ethanol also failed to affect the increase in cGMP induced by NP. On the other hand, as might be expected from previous experiments indicating that LHRH release was brought about by PGE2, NP increased the conversion of [14C]arachidonic acid to its metabolites, particularly PGE2. Ethanol completely blocked the release of LHRH induced by NP and the increase in PGE2 induced by NP. Therefore, the results support the theory that norepinephrine acts to stimulate NO release from NOergic neurons. This NO diffuses to the LHRH terminals where it activates guanylate cyclase, leading to an increase in cGMP. At the same time, it also activates cyclooxygenase. The increase in cGMP increases intracellular free calcium, activating phospholipase A2 to provide arachidonic acid, the substrate for conversion by the activated cyclooxygenase to PGE2, which then activates the release of LHRH. Since alcohol inhibits the conversion of labeled arachidonic acid to PGE2, it must act either directly to inhibit cyclooxygenase or perhaps it may act by blocking the increase in intracellular free calcium induced by cGMP, which is crucial for activation of of both phospholipase A2 and cyclooxygenase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The aim of the present study was to determine the role of cyclic adenosine monophosphate (cAMP) on arginase activity in a murine macrophage cell line (RAW264.7 cells) stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans. Materials and methods: The cells were treated with A. actinomycetemcomitans LPS for 24 h. The effects of SQ22536 (an adenylyl cyclase inhibitor), ODQ (a guanylyl cyclase inhibitor), dibutyryl cAMP (a cAMP analog), 8-bromo cyclic guanosine monophosphate (a cGMP analog), forskolin (an adenylyl cylase activator), and cycloheximide (a protein synthesis inhibitor) on arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells were also determined. Arginase activity was assessed in LPS-stimulated cells in the presence of 3-isobutyl-1-methylxanthine (IBMX), siguazodan and rolipram [phosphodiesterase (PDE) inhibitors] as well as KT5720 [a protein kinase A (PKA) inhibitor]. Results: Arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells was suppressed by SQ22536 but not ODQ. Enhancement of arginase activity was observed in the presence of cAMP analog or forskolin but not cGMP analog. Cycloheximide blocked arginase activity in the cells in the presence of cAMP analog or forskolin with or without A. actinomycetemcomitans LPS. IBMX augmented arginase activity in A. actinomycetemcomitans LPS-stimulated cells. Rolipram (a PDE4 inhibitor) increased the levels of arginase activity higher than siguazodan (a PDE3 inhibitor) in the antigen-stimulated cells. The effect of cAMP analog or forskolin on arginase activity in the presence or absence of A. actinomycetemcomitans LPS was blocked by the PKA inhibitor (KT5720). Conclusion: The results of the present study suggest that A. actinomycetemcomitans LPS may stimulate arginase activity in murine macrophages (RAW264.7 cells) in a cAMP-PKA-dependent pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms underlying the swelling of frog red blood cells (RBC), induced by Pacific (P-CTX-1) and Caribbean (C-CTX-1) ciguatoxins (CTXs), were investigated by measuring the length, width and surface of their elliptic shape. P-CTX-1 (0.5 to 5 nM) and C-CTX-1 (1 mu M) induced RBC swelling within 60 min. The CTXs-induced RBC swelling was blocked by apamin (1 mu M) and by Sr2+ (1 mu M). P-CTX-1-induced RBC swelling was prevented and inhibited by H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one(27 mu M), an inhibitor Of Soluble guanylate cyclase (sGC), and NOS blockade by NG methyl-L-arginine (L-NMA; 10 mu M). Cytochalasin D (cytD, 10 mu M) increased RBC surface and mimicked CTX effect but did not prevent the P-CTX-1-induced L-NMA-sensitive extra increase. Calculations revealed that P-CTX-1 and cytD increase RBC total surface envelop and volume. These data strongly suggest that the molecular mechanisms underlying CTXs-induced RBC swelling involve the NO pathway by an activation of the inducible NOS, leading to sGC activation which modulates intracellular cGMP and regulates L-type Ca2+ channels. The resulting increase in intracellular Ca2+ content, in turn, disrupts the actin cytoskeleton, which causes a water influx and triggers a Ca2+-activated K+ current through SK2 isoform channels. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes. (c) 2006 Published by Elsevier Masson SAS.