993 resultados para burn decision scenarios
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed ; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Dissertação apresentada para a obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Engenharia Sanitária
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
Performance evaluation increasingly assumes a more important role in any organizational environment. In the transport area, the drivers are the company’s image and for this reason it is important to develop and increase their performance and commitment to the company goals. This evaluation can be used to motivate driver to improve their performance and to discover training needs. This work aims to create a performance appraisal evaluation model of the drivers based on the multi-criteria decision aid methodology. The MMASSI (Multicriteria Methodology to Support Selection of Information Systems) methodology was adapted by using a template supporting the evaluation according to the freight transportation company in study. The evaluation process involved all drivers (collaborators being evaluated), their supervisors and the company management. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used.
Resumo:
Railway vehicle homologation, with respect to running dynamics, is addressed via dedicated norms. The results required, such as, accelerations and/or wheel-rail contact forces, obtained from experimental tests or simulations, must be available. Multibody dynamics allows the modelling of railway vehicles and their representation in real operations conditions, being the realism of the multibody models greatly influenced by the modelling assumptions. In this paper, two alternative multibody models of the Light Rail Vehicle 2000 (LRV) are constructed and simulated in a realistic railway track scenarios. The vehicle-track interaction compatibility analysis consists of two stages: the use of the simplified method described in the norm "UIC 518-Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behaviour-Safety-Track Fatigue-Running Behaviour" for decision making; and, visualization inspection of the vehicle motion with respect to the track via dedicated tools for understanding the mechanisms involved.
Resumo:
Multi-criteria decision analysis(MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
Multi-criteria decision analysis (MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
The main objective of this work is to report on the development of a multi-criteria methodology to support the assessment and selection of an Information System (IS) framework in a business context. The objective is to select a technological partner that provides the engine to be the basis for the development of a customized application for shrinkage reduction on the supply chains management. Furthermore, the proposed methodology di ers from most of the ones previously proposed in the sense that 1) it provides the decision makers with a set of pre-defined criteria along with their description and suggestions on how to measure them and 2)it uses a continuous scale with two reference levels and thus no normalization of the valuations is required. The methodology here proposed is has been designed to be easy to understand and use, without a specific support of a decision making analyst.
Resumo:
Over the last fifty years mobility practices have changed dramatically, improving the way travel takes place, the time it takes but also on matters like road safety and prevention. High mortality caused by high accident levels has reached untenable levels. But the research into road mortality stayed limited to comparative statistical exercises which go no further than defining accident types. In terms of sharing information and mapping accidents, little progress has been mad, aside from the normal publication of figures, either through simplistic tables or web pages. With considerable technological advances on geographical information technologies, research and development stayed rather static with only a few good examples on dynamic mapping. The use of Global Positioning System (GPS) devices as normal equipments on automobile industry resulted in a more dynamic mobility patterns but also with higher degrees of uncertainty on road traffic. This paper describes a road accident georeferencing project for the Lisbon District involving fatalities and serious injuries during 2007. In the initial phase, individual information summaries were compiled giving information on accidents and its majour characteristics, collected by the security forces: the Public Safety Police Force (Polícia de Segurança Pública - PSP) and the National Guard (Guarda Nacional Republicana - GNR). The Google Earth platform was used to georeference the information in order to inform the public and the authorities of the accident locations, the nature of the location, and the causes and consequences of the accidents. This paper also gives future insights about augmented reality technologies, considered crucial to advances to road safety and prevention studies. At the end, this exercise could be considered a success because of numerous consequences, as for stakeholders who decide what to do but also for the public awareness to the problem of road mortality.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.