850 resultados para building energy labelling
Resumo:
In this thesis project, a building in Vegagatan 12, Gävle has been analysed in order to see why it does consume more energy than it was expected. This building is a low energy building certified by Miljöbyggnad and it should use less than 55kWh/m2 year and nowadays it is using 62.23 kWh/m2. To get the needed data, some information about the building has been gathered, some measurements have been done in the building and some calculations have been done with those measurements. Finally, some possible solutions have been offered to reduce the energy use of the building. Insulating the floor, the pipes and the walls, reducing the indoor temperature in winter... All of these changes need the help of environmentally friendly attitudes, which is a very important fact in low energy buildings.
Resumo:
(English)The Swedish industrial sector has overcome the oil crisis and has maintained the energy use constant even though the production has grown. This has been achieved thanks to the development of several energy policies, by the Swedish government, towards the 2020 goals. This thesis carries on this path and performs an energy audit for an old industrial building in Gävle (Sweden) in order to propose different energy efficiency measures to use less energy while maintaining the thermal comfort. The building is in quite a bad shape and some of the areas are unused making them a waste of money. By means of the invoices provided by different companies, the information from the staff and some measures that have been carried out in-situ, the energy balance has been calculated from where conclusions have been drawn. Although it is an industrial building, the study is not going to be focused in the industrial process but in the building’s envelope and support processes, since the unit combines both production and office areas. Therefore, the energy balance is divided in energy supplies (district heating, free heating and sun irradiation) and energy losses (transmission, ventilation hot tap water and infiltrations). The results show that the most important supply is that of the DH whereas the most important losses are the transmission and infiltration. Thus, the measures proposed are focused on the reduction of this relevant parameters. The most important measures are the renovation of the windows, heating systems valves and the ventilation. The glazing of the dwelling is old and some of it is broken accounting for quite a large amount of the losses. The radiator valves are not properly working and there does not exist any temperature control. Therefore the installation of thermostatic valves turns out to be a must. Moreover, some part of the building has no mechanical ventilation but conserves the ducts. These could be utilized if they are connected to the workshop’s ventilation which is capable of generating sufficient flow for the entire building. Finally, although other measures could also be carried out, the ones proposed appear to be the essential ones. A further analysis should be carried out in order to analyze the payback time or investment capability of the company so as to decide between one measure or another. A market study for possible new tenants for the unused parts of the building is also advisable.
Resumo:
The objective of the consultative phase is to examine the role that natural ventilation has and can play in the subdivision planning process in SEQ. The Centre for Subtropical Design at QUT coordinated the consultative phase and has conducted a workshop, and interviews, with stakeholders including developers, land development consultants, land surveyors, urban designers and regulators, to identify current understanding of the impact of urban subdivision on natural ventilation, and the role of natural ventilation in achieving energy efficiency for dwellings. This report details the findings.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
This report summarises the findings from the Sustainable Subdivisions: Energy-Efficient Design project. As new energy-efficiency regulations are developed, there will be a significant demand for information on available assessment tools for rating energy-efficient dwellings, and subdivisional issues such as orientation and solar access will become increasingly important. There will also be increased pressure for products that deliver energy efficiency, such as solar technology, glazing systems, insulation and low-energy building products and materials. The objectives of the Sustainable Subdivisions: Energy-Efficient Design project were to:
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
There has been increasing reliance on mechanical heating, ventilation and air-conditioning (HVAC) systems to achieve thermal comfort in office buildings. The use of universal standards for thermal comfort adopted in air-conditioned spaces often results in a large disparity between mean daily external summer temperatures and temperatures experienced indoors. The extensive overuse of air-conditioning in warm climates not only isolates us from the vagaries of the external environment, but is generally dependent on non-renewable energy. A pilot study conducted at the Queensland University of Technology (QUT) involved altering the thermostat set-points to two or three degrees above the normal summer setting in two air-conditioned buildings during the subtropical summer. This paper presents the findings of the research that led to the formulation of the test study. The findings of the test study are printed in the companion paper DES 72: Adjusting Building Thermastats for Environmental Gains – a Pilot Study.
Resumo:
The international focus on embracing daylighting for energy efficient lighting purposes and the corporate sector’s indulgence in the perception of workplace and work practice “transparency” has spurned an increase in highly glazed commercial buildings. This in turn has renewed issues of visual comfort and daylight-derived glare for occupants. In order to ascertain evidence, or predict risk, of these events; appraisals of these complex visual environments require detailed information on the luminances present in an occupant’s field of view. Conventional luminance meters are an expensive and time consuming method of achieving these results. To create a luminance map of an occupant’s visual field using such a meter requires too many individual measurements to be a practical measurement technique. The application of digital cameras as luminance measurement devices has solved this problem. With high dynamic range imaging, a single digital image can be created to provide luminances on a pixel-by-pixel level within the broad field of view afforded by a fish-eye lens: virtually replicating an occupant’s visual field and providing rapid yet detailed luminance information for the entire scene. With proper calibration, relatively inexpensive digital cameras can be successfully applied to the task of luminance measurements, placing them in the realm of tools that any lighting professional should own. This paper discusses how a digital camera can become a luminance measurement device and then presents an analysis of results obtained from post occupancy measurements from building assessments conducted by the Mobile Architecture Built Environment Laboratory (MABEL) project. This discussion leads to the important realisation that the placement of such tools in the hands of lighting professionals internationally will provide new opportunities for the lighting community in terms of research on critical issues in lighting such as daylight glare and visual quality and comfort.
Resumo:
Purpose – The purpose of this paper is to examine the buyer awareness and acceptance of environmental and energy efficiency measures in the New Zealand residential property markets. This study aims to provide a greater understanding of consumer behaviour in the residential property market in relation to green housing issues ---------- Design/methodology/approach – The paper is based on an extensive survey of Christchurch real estate offices and was designed to gather data on the factors that were considered important by buyers in the residential property market. The survey was designed to allow these factors to be analysed on a socio-economic basis and to compare buyer behaviour based on property values. ---------- Findings – The results show that regardless of income levels, buyers still consider that the most important factor in the house purchase decision is the location of the property and price. Although the awareness of green housing issues and energy efficiency in housing is growing in the residential property market, it is only a major consideration for young and older buyers in the high income brackets and is only of some importance for all other buyer sectors of the residential property market. Many of the voluntary measures introduced by Governments to improve the energy efficiency of residential housing are still not considered important by buyers, indicating that a more mandatory approach may have to be undertaken to improve energy efficiency in the established housing market, as these measures are not valued by the buyer. ---------- Originality/value – The paper confirms the variations in real estate buyer behaviour across the full range of residential property markets and the acceptance and awareness of green housing issues and measures. These results would be applicable to most established and transparent residential property markets.
Resumo:
Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.