971 resultados para brain cortex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to noninvasively assess the temporal changes of lactate in the activated human brain. However, the results have not been consistent. The aim of the present study was to test the sensitivity of 1H-MRS during functional experiments at the highest magnetic field currently available for human studies (7 T). Stability and reproducibility of the measurements were evaluated from LCModel analysis of time series of spectra measured during a visual stimulation paradigm and by examination of the difference between spectra obtained at rest and during activation. The sensitivity threshold to detect concentration changes was 0.2 micromol/g for most of the quantified metabolites. The possible variations of metabolite concentrations during visual stimulation were within the same range (+/-0.2 micromol/g). In addition, the influence of a small line-narrowing effect due to the blood oxygenation level-dependent (BOLD) T2* changes on the estimated concentrations was simulated. Quantification of metabolites was, in general, not affected beyond 1% by line-width changes within 0.5 Hz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although numerous positron emission tomography (PET) studies with (18) F-fluoro-deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG-PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague-Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax /CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC-independent CMRglc . The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 μmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG-PET data available from translational studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician"s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician"s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician"s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orienting attention in space recruits fronto-parietal networks whose damage results in unilateral spatial neglect. However, attention orienting may also be governed by emotional and motivational factors; but it remains unknown whether these factors act through a modulation of the fronto-parietal attentional systems or distinct neural pathways. Here we asked whether attentional orienting is affected by learning about the reward value of targets in a visual search task, in a spatially specific manner, and whether these effects are preserved in right-brain damaged patients with left spatial neglect. We found that associating rewards with left-sided (but not right-sided) targets during search led to progressive exploration biases towards left space, in both healthy people and neglect patients. Such spatially specific biases occurred even without any conscious awareness of the asymmetric reward contingencies. These results show that reward-induced modulations of space representation are preserved despite a dysfunction of fronto-parietal networks associated with neglect, and therefore suggest that they may arise through spared subcortical networks directly acting on sensory processing and/or oculomotor circuits. These effects could be usefully exploited for potentiating rehabilitation strategies in neglect patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microtubule-associated protein MAP2 is essential for development of early neuronal morphology and maintenance of adult neuronal morphology. Several splice variants exist, MAP2a-d, with a lack of MAP2a in cat brain. MAP2 is widely used as a neuronal marker. In this study we compared five monoclonal antibodies (MAbs) against MAP2. They show differences in the immunocytochemical distribution of MAP2 isoforms during development of the visual cortex and cerebellum of the cat. Local and temporal differences were seen with MAb AP18, an antibody directed against a phosphorylation-dependent epitope near the N-terminal end. In large pyramidal dendrites in visual cortex, the AP18 epitope remained in parts immunoreactive after treatment with alkaline phosphatase. Three MAbs, AP14, MT-01, and MT-02, recognized the central region of the MAP2b molecule, which is not present in MAP2c and 2d, and reacted with phosphorylation-independent epitopes. During the first postnatal week the immunostaining in cerebellum differed between antibodies in that some cellular elements in external and internal granular layers and Purkinje cells were stained to various degrees, whereas at later stages staining patterns were similar. At early stages, antibody MT-02 stained cell bodies and dendrites in cerebral cortex and cerebellum. With progressing maturation, immunoreactivity became restricted to distal parts of apical dendrites of pyramidal cells and was absent from perikarya and finer proximal dendrites in cortex. MT-02 did not stain MAP2 in cerebellum of adult animals. This study demonstrates that the immunocytochemical detection of MAP2 depends on modifications such as phosphorylation and conformational changes of the molecule, and that MAP2 staining patterns differ between MAbs. Phosphorylation and specific conformations in the molecule may be essential for modulating function and molecular stability of MAP2, and monoclonal antibodies against such sites may provide tools for studying the functional role of modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence that glucagon-like peptide-1 (GLP-1) (7-36) amide functions as a novel neuropeptide prompted us to study the gene expression of its receptor in rat brain. Northern blot analysis showed transcripts of similar size in RINm5F cells, hypothalamus, and brain-stem. First-strand cDNA was prepared by using RNA from hypothalamus, brainstem, and R1Nm5F cells and subsequently amplified by PCR. Southern blot analysis of the PCR products showed a major 1.4-kb band in all these preparations. PCR products amplified from hypothalamus were cloned, and the nucleotide sequence of one strand was identical to that described in rat pancreatic islets. In situ hybridization studies showed specific labeling in both neurons and glia of the thalamus, hypothalamus, hippocampus, primary olfactory cortex, choroid plexus, and pituitary gland. In the hypothalamus, ventromedial nuclei cells were highly labeled. These findings indicate that GLP-1 receptors are actually synthesized in rat brain. In addition, the colocalization of GLP-1 receptors, glucokinase, and GLUT-2 in the same areas supports the idea that these cells play an important role in glucose sensing in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence that glial cells, in particular astrocytes, interact dynamically with neurons. The well-known anatomofunctional organization of neurons in the barrel cortex offers a suitable and promising model to study such neuroglial interaction. This review summarizes and discusses recent in vitro as well as in vivo works demonstrating that astrocytes receive, integrate, and respond to neuronal signals. In addition, they are active elements of brain metabolism and exhibit a certain degree of plasticity that affects neuronal activity. Altogether these findings indicate that the barrel cortex presents glial compartments overlapping and interacting with neuronal compartments and that these properties help define barrels as functional and independent units. Finally, this review outlines how the use of the barrel cortex as a model might in the future help to address important questions related to dynamic neuroglia interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic pain refractory to medical therapy poses a therapeutic challenge. The repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS) modulate brain activity offering a new approach. Current evidence suggests a potential therapeutic efficacy of motor cortex stimulation for the treatment of pain, but does not (yet) support their recommendation for clinical practice. These methods allow to deepen our knowledge in the pathophysiology of chronic pain while providing new therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical electrical stimulation mapping was used to study neural substrates of the function of writing in the temporoparietal cortex. We identified the sites involved in oral language (sentence reading and naming) and writing from dictation, in order to spare these areas during removal of brain tumours in 30 patients (23 in the left, and 7 in the right hemisphere). Electrostimulation of the cortex impaired writing ability in 62 restricted cortical areas (.25 cm2). These were found in left temporoparietal lobes and were mostly located along the superior temporal gyrus (Brodmann's areas 22 and 42). Stimulation of right temporoparietal lobes in right-handed patients produced no writing impairments. However there was a high variability of location between individuals. Stimulation resulted in combined symptoms (affecting oral language and writing) in fourteen patients, whereas in eight other patients, stimulation-induced pure agraphia symptoms with no oral language disturbance in twelve of the identified areas. Each detected area affected writing in a different way. We detected the various different stages of the auditory-to-motor pathway of writing from dictation: either through comprehension of the dictated sentences (word deafness areas), lexico-semantic retrieval, or phonologic processing. In group analysis, barycentres of all different types of writing interferences reveal a hierarchical functional organization along the superior temporal gyrus from initial word recognition to lexico-semantic and phonologic processes along the ventral and the dorsal comprehension pathways, supporting the previously described auditory-to-motor process. The left posterior Sylvian region supports different aspects of writing function that are extremely specialized and localized, sometimes being segregated in a way that could account for the occurrence of pure agraphia that has long-been described in cases of damage to this region.