993 resultados para bone morphology
Resumo:
Males of pollinating and some non-pollinating fig wasps are wingless and quite dissimilar to their co-specific females. Due to the accentuated sexual dimorphism, males and females of some fig wasp species were described in different genera. We used morphological sperm features obtained from male seminal vesicles and female spermathecas to associate sexes in three non-pollinating fig wasp species, genus Idarnes, that are associated with Ficus citrifolia in Brazil. Sperm obtained from each female morph species presented diagnostic features that led to the association with sperm obtained from males. This method can potentially be used to help enlighten taxonomic problems in other wasp species with sexual di- or polymorphism.
Resumo:
The first zoeal stage of the endemic southern Atlantic pinnotherid crab Austinixa aidae is described and illustrated based on laboratory-hatched material from ovigerous females collected from the upper burrows of the thalassinidean shrimp Callichirus major at Ubatuba, So Paulo, Brazil. The zoeae of Austinixa species can be distinguished from other pinnotherids and especially from zoeae of the closely related species of Pinnixa by the telson structure.
Resumo:
The aim of this study was to summarize the available data on larval morphology of the first zoea of the family Hippolytidae and describe the first zoeal stage of H. obliquimanus from two geographically distinct populations, Brazilian and Caribbean in order to discuss inter- and intraspecific variability. Ovigerous females of Hippolyte obliquimanus were collected at Cahuita (Limon, Costa Rica) and at Ubatuba (Sao Paulo, Brazil). We compiled the published descriptions of all available hippolytid Zoea I (66 spp., 21%), and all zoeae share several characteristics. However, such morphological features cannot be used to distinguish the first zoeae of Hippolytidae from other caridean larvae. Historically, the presence of an exopodal seta at the maxillule and the absence of the anal spine/papilla have been considered as characteristic for the Zoea I of the genus Hippolyte. The results of our revision, however, did not support these conclusions: although H. obliquimanus showed an exopodal seta at the maxillule, four congeners did not bear such structure; moreover, H. obliquimanus as well as one other congener have an anal spine/papilla. All morphological characters observed in the first zoeal stage of H. obliquimanus are shared with others species of the family Hippolytidae. Intraspecific variability in Hippolyte obliquimanus was detected in one morphological aspect: the first zoea had four denticles on the ventral margin of the carapace in the Brazilian population, while specimens from the Costa Rican population had three.
Resumo:
Marcelo A. Scelzo, Marina Z. Fantucci, and Fernando L. Mantelatto (2010) Spermatophore and gonopore morphology of the southwestern-Atlantic hermit crab Pagurus exilis (Benedict, 1892) (Anomura, Paguridae). Zoological Studies 49(3): 421-433. The form and function of the spermatophore have been used as a complementary tool in studies of the reproductive biology and systematics of hermit crabs. In this context, we describe the spermatophore and gonopore morphology of Pagurus exilis. The spermatophores were extracted from the distal part of the vas deferens of specimens collected in Argentina and Brazil. The spermatophores were composed of 3 major regions: a main ampulla (with a sperm capsule inside and an accessory ampulla at the base), a stalk, and a pedestal. Each spermatophore had a distinct dorsolateral suture line around the ampulla, where the rupture occurs to release the sperm. The spermatophore total length was 1.5 times the main ampulla length. The main ampulla was oval and slightly flattened. A triangular accessory ampulla extended from the main ampulla base to the pedestal on 1 side, and contained no to several sperm. The stalk is short and flattened, and as wide as the main ampulla. One to 3 spermatophores were found attached to each pedestal, which was almost oblong in shape. The dimensions of the spermatophore and its component parts were directly influenced by the size of the hermit crab. Gonopores of males were covered by long pappose setae, while female gonopores bore a few short cuspidate setae. Specimens from Brazil and Argentina had the same spermatophore morphology, corroborating the previously observed absence of genetic differences between the both populations. The spermatophore morphology of this species has similarities with the broad general pattern of the Paguridae, being most similar to one of the (at least) 3 patterns of spermatophore morphology described for Pa gurus. http://zoolstud.sinica.edu.tw/Journals/49.3/421.pdf
Resumo:
Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.
Resumo:
Aims: It has long been demonstrated that epidermal growth factor (EGF) has catabolic effects oil bone. Thus. we examined the role of EGF in regulating mechanically induced bone modeling in a rat model of orthodontic tooth movement. Main methods: The maxillary first molars of rats were moved mesially using an orthodontic appliance attached to the maxillary incisor teeth. Rats were randomly divided into 4 groups: (G1) administration of PBS (Phosphate buffer saline Solution (n = 24); (G2) administration of empty liposomes (it = 24): (Q) administration 20 rig of EGF Solution (n = 24): and (G4) 20 ng of EGF-liposomes Solution (it = 24). Each Solution was injected in the mucosa of the left first molar adjacent to the appliance. At days 5, 10, 14 and 2 1 after drug administration. 6 animals of each group were sacrificed. Histomorphometric analysis was used to quantify osteoclasts (Tartrate-resistant acid phosphatase (TRAP) + cells) and tooth movement. Using immunohistochemistry assay we evaluated the RANKL (receptor activator of nuclear factor kappa B ligand) and epidermal growth factor receptor (EGFR) expression. Key findings: The EGF-liposome administration showed an increased tooth movement and osteoclast numbers compared to controls (p<0.05). This was correlated with intense RANKL expression. Both osteoblasts and osteoclasts expressed EGFR. Significance: Local delivery of EGF-liposome stimulates, osteoclastogenesis and tooth movement. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The cellular mechanisms coupling mechanical loading with bone remodeling remain unclear. In the CNS, the excitatory amino acid glutamate (Glu) serves as a potent neurotransmitter exerting its effects via various membrane Glu receptors (GluR). Nerves containing Glu exist close to bone cells expressing functional GluRs. Demonstration of a mechanically sensitive glutamate/aspartate transporter protein and the ability of glutamate to stimulate bone resorption in vitro suggest a role for glutamate linking mechanical load and bone remodeling. We used immunohistochemical techniques to identify the expression of N-methyl-D-aspartate acid (NMDA) and non-NMDA (AMPA or kainate) ionotropic GluR subunits on bone cells in vivo. In bone sections from young adult rats, osteoclasts expressed numerous GluR subunits including AMPA (GluR2/3 and GluR4), kainic acid (GluR567) and NMDA (NMDAR2A, NMDAR2B and NMDAR2C) receptor subtypes. Bone lining cells demonstrated immunoexpression for NMDAR2A, NMDAR2B, NMDAR2C, GluR567, GluR23, GuR2 and GluR4 subunits. Immunoexpression was not evident on osteocytes, chondrocytes or vascular channels. To investigate the effects of mechanical loading on GluR expression, we used a Materials Testing System (MTS) to apply 10 N sinusoidal axial compressive loads percutaneously to the right limbs (radius/ulna, tibia/fibula) of rats. Each limb underwent 300-load cycles/day (cycle rate, 1 Hz) for 4 consecutive days. Contralateral, non-loaded limbs served as controls. Mechanically loaded limbs revealed a load-induced loss of immunoexpression for GluR2/3, GluR4, GluR567 and NMDAR2A on osteoclasts and NMDAR2A, NMDAR2B, GluR2/3 and GluR4 on bone lining cells. Both neonatal rabbit and rat osteoclasts were cultured on bone slices to investigate the effect of the NMDA receptor antagonist, MK801, and the AMPA/kainic acid receptor antagonist, NBQX, on osteoclast resorptive activity in vitro. The inhibition of resorptive function seen suggested that both NMDAR and kainic acid receptor function are required for normal osteoclast function. While the exact role of ionotropic GluRs in skeletal tissue remains unclear, the modulation of GluR subunit expression by mechanical loading lends further support for participation of Glu as a mechanical loading effector. These ionotropic receptors appear to be functionally relevant to normal osteoclast resorptive activity. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
In the Anomura, studies on growth patterns are infrequent, possibly because the heterogeneity of the group, especially in terms of morphology, makes it difficult to construct generalized growth models. Particularly hermit crabs are an interesting group to evaluate aspects of growth, because of their unique body. Isocheles sawayai, a hermit crab found only in the western Atlantic Ocean, poorly known with respect to its sexual dimorphism and maturity, was investigated here based on morphometry. Monthly collections (July 2001 through June 2003) were made from a shrimp fishing boat in the Caraguatatuba region on the northern coast of the state of SA o pound Paulo, Brazil. The specimens were measured and weighed, and had their sex checked. Throughout the sampling period, 374 specimens of I. sawayai were collected (11.23% nonovigerous females, 6.69% ovigerous females, 79.41% males and 2.67% intersexes). The size at which morphological sexual maturity was reached by both sexes ranged from 4.0 to 4.3 mm shield length, according to the relative growth and the size of the smallest ovigerous female. Sexual dimorphism was shown by males, which were significantly larger than females, and by differences in growth pattern between the sexes, especially for relationships that involved the pleopods, which is related to their different functions in males and females. The present study is one of the first to use pleopod morphometry to determine sexual maturity and dimorphism in hermit crabs, especially for species with intersexuality such as I. sawayai.
Resumo:
Glucocorticoids are an important cause of secondary osteoporosis in humans, which decreases bone quality and leads to fractures. Mechanical stimulation in the form of low-intensity and high-frequency vibration seems to be able to prevent bone loss and to stimulate bone formation. The objective of this study was to evaluate the effects of mechanical vibration on bone structure in rats treated with glucocorticoids. Thirty 3-month-old adult male Wistar rats were randomized to three groups: control (C), glucocorticoid (G), and glucocorticoid with vibration (CV). The G and GV groups received 3.5 mg/kg/day of methylprednisolone 5 days/week for a duration of 9 weeks, and the C group received vehicle (saline solution) during the same period. The CV group was vibrated on a special platform for 30 min per day, 5 days per week during the experiment. The platform was set to provide a vertical acceleration of 1 G and a frequency of 60 Hz. Skeletal bone mass was evaluated by total body densitometry (DXA). Fracture load threshold, undecalcified bone histomorphometry, and bone volume were measured in tibias. Glucocorticoids induced a significantly lower weight gain (-9.7%) and reduced the bone mineral content (-9.2%) and trabecular number (-41.8%) and increased the trabecular spacing (+98.0%) in the G group, when compared to the control (C). Vibration (CV) was able to significantly preserve (29.2%) of the trabecular number and decrease the trabecular spacing (+ 26.6%) compared to the G group, although these parameters did not reach C group values. The fracture load threshold was not different between groups, but vibration significantly augmented the bone volume of the tibia by 21.4% in the CV group compared to the C group. Our study demonstrated that low-intensity and high-frequency mechanical vibration was able to partially inhibit the deleterious consequences of glucocorticoids on bone structure in rats. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Vascular calcification is a strong prognostic marker of mortality in hemodialysis patients and has been associated with bone metabolism disorders in this population. In earlier stages of chronic kidney disease (CKD), vascular calcification also has been documented. This study evaluated the association between coronary artery calcification (CAC) and bone histomorphometric parameters in CKD predialysis patients assessed by multislice coronary tomography and by undecalcified bone biopsy. CAC was detected in 33 (66%) patients, and their median calcium score was 89.7 (0.4-2299.3 AU). The most frequent bone histologic alterations observed included low trabecular bone volume, increased eroded and osteoclast surfaces, and low bone-formation rate (BFR/BS). Multiple logistic regression analysis, adjusted for age, sex, and diabetes, showed that BFR/BS was independently associated with the presence of coronary calcification [p=.009; odd ratio (OR) = 0.15; 95% confidence interval (Cl) 0.036-0.619] This study showed a high prevalence of CAC in asymptomatic predialysis CKD patients. Also, there was an independent association of low bone formation and CAC in this population. In conclusion, our results provide evidence that low bone-formation rate constitutes another nontraditional risk factor for cardiovascular disease in CKD patients. 2010 American Society for Bone and Mineral Research.
Resumo:
Introduction: This study was designed to examine the effect of masticatory hypofunction and estrogen deficiency on mandible bone mass and compare this site with spine and femoral bone. Methods: Twenty-four rats were ovariectomized (OVX) or Sham-operated (Sham) and analyzed after feeding with hard diet (Hard) or soft diet (Soft). They were divided into four groups: (GI)Sham-Hard; (GII)OVX-Hard; (GIII)Sham-Soft and (GIV)OVX-Soft. Bone mineral density (BMD) was measured in the spine and femur in the baseline and at the end of the study, and Delta BMD (final BMD - baseline BMD) was calculated. In mandible bone, BMD and histomorphometry were analyzed at the end of the experiment. Results: Sham rats showed higher spine (GI: 13.5%vs GII: 0.74%, P < 0.01; GIII: 10.67%vs GIV: -4.36%, P < 0.001) and femur Delta BMD (GI: 14.43%vs GII: 4.42%, P < 0.01; GIII: 10.58%vs GIV: 0.49%, P < 0.001) than OVX, but no difference was observed in mandible BMD among these groups (P > 0.05). Soft-diet groups showed decreased mandible BMD compared with hard-diet groups (GIV vs GII, P < 0.01; GIII vs GI, P < 0.01). Similarly, mandibular condyle histomorphometry showed that soft-diet groups presented a significant decrease in trabecular thickness and volume (GIV vs GII, P < 0.05; GIII vs GI, P < 0.01) compared with hard diet. Conclusion: Our results suggest that mandibular bone loss resulted from decreased of mechanical loading during mastication, and was not affect by estrogen depletion.
Resumo:
Background and objectives Low bone mineral density and coronary artery calcification (CAC) are highly prevalent among chronic kidney disease (CKD) patients, and both conditions are strongly associated with higher mortality. The study presented here aimed to investigate whether reduced vertebral bone density (VBD) was associated with the presence of CAC in the earlier stages of CKD. Design, setting, participants, & measurements Seventy-two nondialyzed CKD patients (age 52 +/- 11.7 years, 70% male, 42% diabetics, creatinine clearance 40.4 +/- 18.2 ml/min per 1.73 m(2)) were studied. VBD and CAC were quantified by computed tomography. Results CAC > 10 Agatston units (AU) was observed in 50% of the patients (median 120 AU [interquartile range 32 to 584 AU]), and a calcification score >= 400 AU was found in 19% (736 [527 to 1012] AU). VBD (190 +/- 52 Hounsfield units) correlated inversely with age (r = -0.41, P < 0.001) and calcium score (r = -0.31, P = 0.01), and no correlation was found with gender, creatinine clearance, proteinuria, lipid profile, mineral parameters, body mass index, and diabetes. Patients in the lowest tertile of VBD had expressively increased calcium score in comparison to the middle and highest tertile groups. In the multiple logistic regression analysis adjusting for confounding variables, low VBD was independently associated with the presence of CAC. Conclusions Low VBD was associated with CAC in nondialyzed CKD patients. The authors suggest that low VBD might constitute another nontraditional risk factor for cardiovascular disease in CKD. Clin J Am Soc Nephrol 6: 1456-1462, 2011. doi: 10.2215/CJN.10061110
Resumo:
Background and objectives: As well as being a marker of body iron stores, serum ferritin (sFerritin) has also been shown to be a marker of inflammation in hemodialysis (HD) patients. The aim of this study was to analyze whether sFerritin is a reliable marker of the iron stores present in bone marrow of HD patients. Design: Histomorphometric analysis of stored transiliac bone biopsies was used to assess iron stores by determining the number of iron-stained cells per square millimeter of bone marrow. Results: In 96 patients, the laboratory parameters were hemoglobin = 11.3 +/- 1.6 g/dl, hematocrit = 34.3 +/- 5%, sFerritin 609 +/- 305 ng/ml, transferrin saturation = 32.7 +/- 22.5%, and C-reactive protein (CRP) = 0.9 +/- 1.4 mg/dl. sFerritin correlated significantly with CRP, bone marrow iron, and time on HD treatment W = 0.006, 0.001, and 0.048, respectively). The independent determinants of sFerritin were CRP (beta-coef = 0.26; 95% CI = 24.6 to 132.3) and bone marrow iron (beta-coef = 0.32; 95% CI = 0.54 to 2.09). Bone marrow iron was higher in patients with sFerritin >500 ng/ml than in those with sFerritin :5500 ng/ml. In the group of patients with sFerritin :5500 ng/ml, the independent determinant of sFerritin was bone marrow iron (beta-coef = 0.48, 95% CI = 0.48 to 1.78), but in the group of patients with sFerritin >500 ng/ml, no independent determinant of sFerritin was found. Conclusions: sFerritin adequately reflects iron stores in bone marrow of HD patients.
Resumo:
Background: Vascular calcification is common and constitutes a prognostic marker of mortality in the hemodialysis population. Derangements of mineral metabolism may influence its development. The aim of this study is to prospectively evaluate the association between bone remodeling disorders and progression of coronary artery calcification (CAC) in hemodialysis patients. Study Design: Cohort study nested within a randomized controlled trial. Setting & Participants: 64 stable hemodialysis patients. Predictor: Bone-related laboratory parameters and bone histomorphometric characteristics at baseline and after 1 year of follow-up. Outcomes: Progression of CAC assessed by means of coronary multislice tomography at baseline and after 1 year of follow-up. Baseline calcification score of 30 Agatston units or greater was defined as calcification. Change in calcification score of 15% or greater was defined as progression. Results: Of 64 patients, 26 (40%) had CAC at baseline and 38 (60%) did not. Participants without CAC at baseline were younger (P < 0.001), mainly men (P = 0.03) and nonwhite (P = 0.003), and had lower serum osteoprotegerin levels (P = 0.003) and higher trabecular bone volume (P = 0.001). Age (P 0.003; beta coefficient = 1.107; 95% confidence interval [Cl], 1.036 to 1.183) and trabecular bone volume (P = 0.006; beta coefficient = 0.828; 95% Cl, 0.723 to 0.948) were predictors for CAC development. Of 38 participants who had calcification at baseline, 26 (68%) had CAC progression in 1 year. Progressors had lower bone-specific alkaline phosphatase (P = 0.03) and deoxypyridinoline levels (P = 0.02) on follow-up, and low turnover was mainly diagnosed at the 12-month bone biopsy (P = 0.04). Low-turnover bone status at the 12-month bone biopsy was the only independent predictor for CAC progression (P = 0.04; beta coefficient = 4.5; 95% Cl, 1.04 to 19.39). According to bone histological examination, nonprogressors with initially high turnover (n = 5) subsequently had decreased bone formation rate (P = 0.03), and those initially with low turnover (n = 7) subsequently had increased bone formation rate (P = 0.003) and osteoid volume (P = 0.001). Limitations: Relatively small population, absence of patients with severe hyperparathyroidism, short observational period. Conclusions: Lower trabecular bone volume was associated with CAC development, whereas improvement in bone turnover was associated with lower CAC progression in patients with high- and low-turnover bone disorders. Because CAC is implicated in cardiovascular mortality, bone derangements may constitute a modifiable mortality risk factor in hemodialysis patients.