905 resultados para biomaterials, diffusion, electrophoresis, hydrogel, loading, mechanical property, release, porogen, wound dressing
Resumo:
Composite magnetic materials have the unique advantage of property modification for tailoring devices for various applications. Rubber ferrite composites (RFCs) prepared by incorporating ferrites in rubber matrixes have the advantage of easy mouldability and flexibility. RFCs containing various loadings of nickel zinc ferrite (NZF) (Ni1 xZnxFe2O4) in a natural rubber matrix have been prepared. The cure characteristics and the mechanical properties of these composites were evaluated. The effect of loading on the cure characteristics and tensile properties were also evaluated. It is found that the loading dependence on the cure time and mechanical properties exhibit an identical pattern.
Resumo:
Titanium alloys are excellent implant materials for orthopedic applications due to their desirable properties, such as good corrosion resistance, low elasticity modulus, and excellent biocompatibility. The presence of interstitial elements (such as oxygen and nitrogen) causes strong changes in the material's mechanical properties, mainly in its elastic properties. Study of the interaction among interstitial elements present in metals began with Snoek's postulate, that a stress-induced ordering of interstitials gives rise to a peak in the mechanical relaxation (internal friction) spectra. In the mechanical relaxation spectra, each species of interstitial solute atom gives rise to a distinct Snoek's peak, whose temperature and position depend on the measurement frequency. This effect is very interesting because its peculiar parameters are directly related to the diffusion coefficient (D) for the interstitial solute. This paper presents a study of diffusion of heavy interstitial elements in Ti-35Nb-7Zr-5Ta alloys using mechanical spectroscopy. Pre-exponential factors and activation energies are calculated for oxygen and nitrogen in theses alloys.
Resumo:
In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. © 2013 American Chemical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. Statement of significance Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.
Resumo:
Nucleus pulposus replacements have been subjected to highly controversial discussions over the last 40 years. Their use has not yet resulted in a positive outcome to treat herniated disc or degenerated disc disease. The main reason is that not a single implant or tissue replacement was able to withstand the loads within an intervertebral disc. Here, we report on the development of a photo-polymerizable poly(ethylene glycol)dimethacrylate nano-fibrillated cellulose composite hydrogel which was tuned according to native tissue properties. Using a customized minimally-invasive medical device to inject and photopolymerize the hydrogel insitu, samples were implanted through an incision of 1 mm into an intervertebral disc of a bovine organ model to evaluate their long-term performance. When implanted into the bovine disc model, the composite hydrogel implant was able to significantly re-establish disc height after surgery (p < 0.0025). The height was maintained after 0.5 million loading cycles (p < 0.025). The mechanical resistance of the novel composite hydrogel material combined with the minimally invasive implantation procedure into a bovine disc resulted in a promising functional orthopedic implant for the replacement of the nucleus pulposus.
Resumo:
The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.
Resumo:
Interpenetrating polymer networks (lPN's), have been defined as a combination of two polymers each in network form, at least one of which has been synthesised and / or crosslinked in the presence of the other. A semi-lPN, is formed when only one of the polymers in the system is crosslinked, the other being linear. lPN's have potential advantages over homogeneous materials presently used in biomedical applications, in that their composite nature gives them a useful combination of properties. Such materials have potential uses in the biomedical field, specifically for use in hard tissue replacements, rigid gas permeable contact lenses and dental materials. Work on simply two or three component systems in both low water containing lPN's supplemented by the study of hydrogels (water swollen hydrophilic polymers) can provide information useful in the future development of more complex systems. A range of copolymers have been synthesised using a variety of methacrylates and acrylates. Hydrogels were obtained by the addition of N-vinyl pyrrolidone to these copolymers. A selection of interpenetrants were incorporated into the samples and their effect on the copolymer properties was investigated. By studying glass transition temperatures, mechanical, surface, water binding and oxygen permeability properties samples were assessed for their suitability for use as biomaterials. In addition copolymers containing tris-(trimethylsiloxy)-y-methacryloxypropyl silane, commonly abbreviated to 'TRlS', have been investigated. This material has been shown to enhance oxygen permeability, a desirable property when considering the design of contact lenses. However, 'TRIS' has a low polar component of surface free energy and hence low wettability. Copolymerisation with a range of methacrylates has shown that significant increases in surface wettability can be obtained without a detrimental effect on oxygen permeability. To further enhance to surface wettability 4-methacryloxyethyl trimellitic anhydride was incorporated into a range of promising samples. This study has shown that by careful choice of monomers it is possible to synthesise polymers that possess a range of properties desirable in biomedical applications.
Resumo:
Sustained drug release systems provide many advantages over traditional delivery methods such as extending the time in which the drug is found to be within an effective concentration within the therapeutic window, which decreases the frequency of administration of the drug, and increases patient compliance. Research using polyacrylamide crosslinked by oligomers containing an aptamer sequence, has demonstrated a pulsatile release over 50 minutes triggered by a 2 mM target adenosine concentration. This thesis aims to build off this concept by designing a system that delivers in a sustained manner when triggered by micromolar target concentrations reflective of disease in vivo, using macromolecular targets. For example, the disease wet age related macular degeneration (wet AMD) is associated with increased concentrations of the protein vascular endothelial growth factor (VEGF-A) – a macromolecule. Patients with wet AMD would benefit from the implantation of devices or microspheres that release drugs in a sustained manner in response to local VEGF concentrations. In this thesis, we hypothesize that the protein lysozyme, used to demonstrate proof-of-concept, could trigger the increased release of drugs from oligomer-crosslinked alginate. The objectives are to (i) demonstrate sustained release from alginate, (ii) design oligomer crosslinked alginate that degrades in response to lysozyme, and then (iii) use these systems to control the release of FITC-dextran with and without lysozyme. A series of control experiments and analyses were used to optimize the crosslinking of alginate by annealed oligomers. The cumulative release of FITC-dextran (MW 20,000) from oligomer crosslinked alginate increased by 3.4 μg when lysozyme (3 μM) was introduced at 48 hours, as opposed to controls which released only 0.2 μg. FITC-loaded alginate microspheres coated by oligomer-crosslinked alginate released 15% more FITC-dextran over 120 hours when placed into 3 μM of lysozyme than without lysozyme. Controls of alginate crosslinked with PEG or control oligomers (without a lysozyme aptamer sequence) had no changes in release with lysozyme. The incorporation of a lysozyme aptamer onto oligomers used to crosslink alginate disks or alginate coatings on microspheres resulted in different diffusion and release of FITC-dextran into PBS with or without lysozyme. This approach could be adapted for the delivery of drugs to diseases with specific protein profiles such as wet AMD.
Resumo:
This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.
Resumo:
This study investigated a novel drug delivery system (DDS), consisting of polycaprolactone (PCL) or polycaprolactone 20% tricalcium phosphate (PCL-TCP) biodegradable scaffolds, fibrin Tisseel sealant and recombinant bone morphogenetic protein-2 (rhBMP-2) for bone regeneration. PCL and PCL-TCP-fibrin composites displayed a loading efficiency of 70% and 43%, respectively. Fluorescence and scanning electron microscopy revealed sparse clumps of rhBMP-2 particles, non-uniformly distributed on the rods’ surface of PCL-fibrin composites. In contrast, individual rhBMP-2 particles were evident and uniformly distributed on the rods’ surface of the PCL-TCP-fibrin composites. PCL-fibrin composites loaded with 10 and 20 μg/ml rhBMP-2 demonstrated a triphasic release profile as quantified by an enzyme-linked immunosorbent assay (ELISA). This consisted of burst releases at 2 h, and days 7 and 16. A biphasic release profile was observed for PCL-TCP-fibrin composites loaded with 10 μg/ml rhBMP-2, consisting of burst releases at 2 h and day 14. PCL-TCP-fibrin composites loaded with 20 μg/ml rhBMP-2 showed a tri-phasic release profile, consisting of burst releases at 2 h, and days 10 and 21. We conclude that the addition of TCP caused a delay in rhBMP-2 release. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline phosphatase assay verified the stability and bioactivity of eluted rhBMP-2 at all time points
Resumo:
Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.