960 resultados para avian physiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species–area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species–area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km × 10 km) and regional (290 km × 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the relative influence of environmental variables, especially climate, in driving variation in species diversity is becoming increasingly important for the conservation of biodiversity. The objective of this study was to determine to what extent climate can explain the structure and diversity of forest bird communities by sampling bird abundance in homogenous mature spruce stands in the boreal forest of the Québec-Labrador peninsula using variance partitioning techniques. We also quantified the relationship among two climatic gradients, summer temperature and precipitation, and bird species richness, migratory strategy, and spring arrival phenology. For the bird community, climate factors appear to be most important in explaining species distribution and abundance because nearly 15% of the variation in the distribution of the 44 breeding birds selected for the analysis can be explained by climate. The vegetation variables we selected were responsible for a much smaller amount of the explained variation (4%). Breeding season temperature seems to be more important than precipitation in driving variation in bird species diversity at the scale of our analysis. Partial correlation analysis indicated that bird species richness distribution was determined by the temperature gradient, because the number of species increased with increasing breeding season temperature. Similar results were observed between breeding season temperature and the number of residents, short-distance and long-distance migrants, and early and late spring migrants. Our results suggest that the northern and southern range boundaries of species are not equally sensitive to the temperature gradient across the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological traps are attractive population sinks created when anthropogenic habitat alteration inadvertently creates a mismatch between the attractiveness of a habitat based upon its settlement cues, and its current value for survival or reproduction. Traps represent a new threat to the conservation of native species, yet little attention has been given to developing practical approaches to eliminating them. In the northern Rocky Mountains of Montana, Olive-sided Flycatchers (Contopus cooperi) prefer to settle in patches of selectively harvested forest versus burned forest despite the lower reproductive success and higher nest predation risk associated with the former habitat. I investigated characteristics of preferred perch sites for this species and how these preferences varied between habitats and sexes. I then built on previous research to develop a range of management prescriptions for reducing the attractiveness of selectively harvested forest, thereby disarming the ecological trap. Female flycatchers preferred to forage from shorter perch trees than males, and females’ perches were shorter than other available perch trees. Both sexes preferred standing dead perch trees (snags) and these preferences were most obvious in harvested forest where snags are rarer. Because previous research shows that snag density is linked to habitat preference and spruce/fir trees are preferred nest substrate, my results suggest these two habitat components are focal habitat selection cues. I suggest alternative and complementary strategies for eliminating the ecological trap for Olive-sided Flycatchers including: (1) reduced retention and creation of snags, (2) avoiding selective harvest in spruce, fir, and larch stands, (3) avoiding retention of these tree species, and (4) selecting only even-aged canopy height trees for retention so as to reduce perch availability for female flycatchers. Because these strategies also have potential to negatively impact habitat suitability for other forest species or even create new ecological traps, we urge caution in the application of our management recommendations.