993 resultados para auxin transport mutants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. More than 1300 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF), a disease characterized by deficient epithelial Cl- secretion and enhanced Na+ absorption. The clinical course of the disease is determined by the progressive lung disease. Thus, novel approaches in pharmacotherapy are based primarily on correction of the ion transport defect in the airways. 2. The current therapeutic strategies try to counteract the deficiency in Cl- secretion and the enhanced Na+ absorption. A number of compounds have been identified, such as genistein and xanthine derivatives, which directly activate mutant CFTR. Other compounds may activate alternative Ca2+-activated Cl- channels or basolateral K+ channels, which supply the driving force for Cl- secretion. Apart from that, Na+ channel blockers, such as phenamil and benzamil, are being explored, which counteract the hyperabsorption of NaCl in CF airways. 3. Clinical trials are under way using purinergic compounds such as the P2Y(2) receptor agonist INS365. Activation of P2Y(2) receptors has been found to both activate Cl- secretion and inhibit Na+ absorption. 4. The ultimate goal is to recover Cl- channel activity of mutant CFTR by either enhancing synthesis and expression of the protein or by activating silent CFTR Cl- channels. Strategies combining these drugs with compounds facilitating Cl- secretion and inhibiting Na+ absorption in vivo may have the best chance to counteract the ion transport defect in cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and is removed from the extracellular space by an energy-dependent process involving neuronal and glial cell transporters. The radial glial Muller cells express the glutamate transporter, GLAST, and preferentially accumulate glutamate. However, during an ischaemic episode, extracellular glutamate concentrations may rise to excitotoxic levels. Is this catastrophic rise in extracellular glutamate due to a failure of GLAST? Using immunocytochemistry, we monitored the transport of the glutamate transporter substrate, D-aspartate, in the retina under normal and ischaemic conditions. Two models of compromised retinal perfusion were compared: (1) Anaesthetised rats had their carotid arteries occluded for 7 days to produce a chronic reduction in retinal blood flow. Retinal function was assessed by electroretinography. D-aspartate was injected into the eye for 45 min, Following euthanasia, the retina was processed for D-aspartate. GLAST and glutamate immunocytochemistry. Although reduced retinal perfusion suppresses the electroretinogram b-wave, neither retinal histology, GLAST expression, nor the ability of Muller cells to uptake D-aspartate is affected. As this insult does not appear to cause excitotoxic neuronal damage, these data suggest that GLAST function and glutamate clearance are maintained during periods of reduced retinal perfusion. (2) Occlusion of the central retinal artery for 60 min abolishes retinal perfusion, inducing histological damage and electroretinogram suppression. Although GLAST expression appears to be normal. its ability to transport D-aspartate into Muller cells is greatly reduced. Interestingly, D-aspartate is transported into neuronal cells, i.e. photoreceptors, bipolar and ganglion cells. This suggests that while GLAST is vitally important for the clearance of excess extracellular glutamate, its capability to sustain inward transport is particularly susceptible to an acute ischaemic attack. Manipulation of GLAST function could alleviate the degeneration and blindness that result from ischaemic retinal disease. (C) 2001 Elsevier Science Ltd, All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many non-steroidal anti-inflammatory drugs (NSAIDs) which form acyl glucuronide conjugates as major metabolites have shown an antiproliferative effect on colorectal tumors. This study assesses the extent to which rearrangement of an acyl glucuronide metabolite of a model NSAID into beta -glucuronidase-resistant isomers facilitates its passage through the small intestine to reach the colon. Rats were dosed orally with diflunisal (DF), its acyl glucuronide (DAG) and a mixture of rearrangement isomers (iso-DAG) at 10 mg DF equivalents/kg. The parent drug DF appeared in plasma after all doses, with maximum concentrations of 20.5 +/- 2.5, 28.8 +/- 8.3 and 11.0 +/- 1.6 mug DF/ml respectively, obtained at 3.8 +/- 0.3, 3.6 +/- 1.8 and 7.5 +/- 0.9 hr after the DF, DAG and iso-DAG doses respectively. At 48 hr, 16.2 +/- 3.3, 19.8 +/- 0.8 and 42.9 +/- 10.1% of the doses respectively were recovered in feces, with less than or equal to 1% remaining in the intestine. About half of each dose was recovered as DF and metabolites in 48 hr urine: for DF and DAG doses, the majority was in the first 24 hr urine. whereas for iso-DAG doses, recoveries in the first and second 24 hr periods were similar. The results show that hydrolysis of both DAG and iso-DAG, and absorption of liberated DF, occur during passage through the gut, but that these processes occur more slowly and to a lesser degree for iso-DAG. The intrinsic hydrolytic capacities of various intestinal segments (including contents) towards DAG and iso-DAG were obtained by incubating homogenates under saturating concentrations of DAG/iso-DAG at 37 degreesC. Upper small intestine, lower small intestine, caecum and colon released 2400, 3200, 9200 and 22800 mug DF/hr/g tissue plus contents respectively from DAG substrate, and 18, 10, 140 and 120 mug DF/hr/g tissue plus contents respectively from iso-DAG substrate. The much greater resistance of iso-DAG to hydrolysis appears attributable to its resistance to beta -glucuronidases. The data suggest that in rats dosed with DF, DAG excreted in bile would be substantially hydrolysed in the small intestine and liberated DF reabsorbed, but that portion which rearranges to iso-DAG would likely reach the colon. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contaminant transport in coastal aquifers is complicated partly due to the conditions at the seaward boundary including seawater intrusion and tidal variations of sea level. Their inclusion in modelling this system will be computationally expensive. Therefore, it will be instructive to investigate the consequence of simplifying the seaward boundary condition by neglecting the seawater density and tidal variations in numerical predictions of contaminant transport in this zone. This paper presents a comparison of numerical predictions for a simplified seaward boundary condition with experimental results for a corresponding realistic one including a saltwater interface and tidal variations. Different densities for contaminants are considered. The comparison suggests that the neglect of the seawater intrusion and tidal variations does not affect noticeably the overall migration rate of the plume before it reaches the saltwater interface. However, numerical prediction shows that a more dense contaminant travels further seaward and part of the solute mass exits under the sea if the seawater density is not included. This is not consistent with the experimental result, which shows that the contaminant travels upwards to the shoreline along the saltwater interface. Neglect of seawater density, therefore, will result in an underestimation of the exit rate of solute mass around the coastline and fictitious migration paths under the seabed. For a less dense contaminant, neglect of seawater density has little effect on numerical prediction of migration paths. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fifth increased branching ramosus (rms) mutant, rms5, from pea (Pisum sativum), is described here for phenotype and grafting responses with four other rms mutants. Xylem sap zeatin riboside concentration and shoot auxin levels in rms5 plants have also been compared with rms1 and wild type (WT). Rms1 and Rms5 appear to act closely at the biochemical or cellular level to control branching, because branching was inhibited in reciprocal epicotyl grafts between rms5 or rms1 and WT plants, but not inhibited in reciprocal grafts between rms5 and rmsl seedlings. The weakly transgressive or slightly additive phenotype of the rmsl rms5 double mutant provides further evidence for this interaction. Like rms1, rms5 rootstocks have reduced xylem sap cytokinin concentrations, and rms5 shoots do not appear deficient in indole-3-acetic acid or 4-chloroindole-3-acetic acid. Rms1 and Rms5 are similar in their interaction with other Rms genes. Reciprocal grafting studies with rmsl, rms2, and rms5, together with the fact that root xylem sap cytokinin concentrations are reduced in rms1 and rms5 and elevated in rms2 plants, indicates that Rms1 and Rms5 may control a different pathway than that controlled by Rms2. Our studies indicate that Rms1 and Rms5 may regulate a novel graft-transmissible signal involved in the control of branching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 mum nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 mum nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 mum) significantly inhibited basal and insulin-stimulated glucose uptake in adi. pocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 muM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 muM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degreesC. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-LI adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA/AM.. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degreesC, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/cahnodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.