946 resultados para automatic data entry
Resumo:
We analyse the determinants of firm entry in developing countries using Argentina as an illustrative case. Our main finding is that although most of the regional determinants used in previous studies analysing developed countries are also relevant here, there is a need for additional explanatory variables that proxy for the specificities of developing economies (e.g., poverty, informal economy and idle capacity).We also find evidence of a core-periphery pattern in the spatial structure of entry that seems to be mostly driven by differences in agglomeration economies. Since regional policies aiming to attract new firms are largely based on evidence from developed countries, our results raise doubts about the usefulness of such policies when applied to developing economies. JEL classification: R12, R30, C33. Key words: Firm entry, Argentina, count data models.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.
Resumo:
In this diploma work advantages of coherent anti-Stokes Raman scattering spectrometry (CARS) and various methods of the quantitative analysis of substance structure with its help are considered. The basic methods and concepts of the adaptive analysis are adduced. On the basis of these methods the algorithm of automatic measurement of a scattering strip size of a target component in CARS spectrum is developed. The algorithm uses known full spectrum of target substance and compares it with a CARS spectrum. The form of a differential spectrum is used as a feedback to control the accuracy of matching. To exclude the influence of a background in CARS spectra the differential spectrum is analysed by means of its second derivative. The algorithm is checked up on the simulated simple spectra and on the spectra of organic compounds received experimentally.
Resumo:
In liberalized electricity markets, which have taken place in many countries over the world, the electricity distribution companies operate in the competitive conditions. Therefore, accurate information about the customers’ energy consumption plays an essential role for the budget keeping of the distribution company and for correct planning and operation of the distribution network. This master’s thesis is focused on the description of the possible benefits for the electric utilities and residential customers from the automatic meter reading system usage. Major benefits of the AMR, illustrated in the thesis, are distribution network management, power quality monitoring, load modelling, and detection of the illegal usage of the electricity. By the example of the power system state estimation, it was illustrated that even the partial installation of the AMR in the customer side leads to more accurate data about the voltage and power levels in the whole network. The thesis also contains the description of the present situation of the AMR integration in Russia.
Resumo:
Marketing scholars have suggested a need for more empirical research on consumer response to malls, in order to have a better understanding of the variables that explain the behavior of the consumers. The segmentation methodology CHAID (Chi-square automatic interaction detection) was used in order to identify the profiles of consumers with regard to their activities at malls, on the basis of socio-demographic variables and behavioral variables (how and with whom they go to the malls). A sample of 790 subjects answered an online questionnaire. The CHAID analysis of the results was used to identify the profiles of consumers with regard to their activities at malls. In the set of variables analyzed the transport used in order to go shopping and the frequency of visits to centers are the main predictors of behavior in malls. The results provide guidelines for the development of effective strategies to attract consumers to malls and retain them there.
Resumo:
In the modern warfare there is an active development of a new trend connected with a robotic warfare. One of the critical elements of robotics warfare systems is an automatic target recognition system, allowing to recognize objects, based on the data received from sensors. This work considers aspects of optical realization of such a system by means of NIR target scanning at fixed wavelengths. An algorithm was designed, an experimental setup was built and samples of various modern gear and apparel materials were tested. For pattern testing the samples of actively arm engaged armies camouflages were chosen. Tests were performed both in clear atmosphere and in the artificial extremely humid and hot atmosphere to simulate field conditions.
Resumo:
This study focuses on observing how Finnish companies execute their new product launch processes. The main objective was to find out how entry timing moderates the relationship between launch tactics (namely product innovativeness, price and emotional advertising) and new product performance (namely sales volume and customer profitability). The empirical analysis was based on data collected in Lappeenranta University of Technology. The sample consisted of Finnish companies representing different industries and innovation activities. Altogether 272 usable responses were received representing a response rate of 37.67%. The measures were first assessed by using exploratory factor analysis (EFA) in PASW Statistics 18 and then further verified with confirmatory factor analysis (CFA) in LISREL 8.80. To test the hypotheses of the moderating effects of entry timing, hierarchical regression analysis was used in PASW Statistics 18. The results of the study revealed that the effect of product innovativeness on new product sales volume is dependent on entry timing. This implies that companies should carefully consider what would be the best time for entering the market when launching highly innovative new products. The results also depict a positive relationship between emotional advertising and new product sales volume. In addition, partial support was found for a positive relationship between pricing and new product customer profitability.
Resumo:
Coffee production was closely linked to the economic development of Brazil and, even today, coffee is an important product of the national agriculture. The State of Minas Gerais currently accounts for 52% of the whole coffee area in Brazil. Remote sensing data can provide information for monitoring and mapping of coffee crops, faster and cheaper than conventional methods. In this context, the objective of this study was to assess the effectiveness of coffee crop mapping in Monte Santo de Minas municipality, Minas Gerais State, Brazil, from fraction images derived from MODIS data, in both dry and rainy seasons. The Spectral Linear Mixing Model was used to derive fraction images of soil, coffee, and water/shade. These fraction images served as input data for the supervised automatic classification using the SVM - Support Vector Machine approach. The best results concerning Overall Accuracy and Kappa Index were obtained in the classification of the dry season, with 67% and 0.41, respectively.
Resumo:
Open data refers to publishing data on the web in machine-readable formats for public access. Using open data, innovative applications can be developed to facilitate people‟s lives. In this thesis, based on the open data cases (discussed in the literature review), Open Data Lappeenranta is suggested, which publishes open data related to opening hours of shops and stores in Lappeenranta City. To prove the possibility of creating Open Data Lappeenranta, the implementation of an open data system is presented in this thesis, which publishes specific data related to shops and stores (including their opening hours) on the web in standard format (JSON). The published open data is used to develop web and mobile applications to demonstrate the benefits of open data in practice. Also, the open data system provides manual and automatic interfaces which make it possible for shops and stores to maintain their own data in the system. Finally in this thesis, the completed version of Open Data Lappeenranta is proposed, which publishes open data related to other fields and businesses in Lappeenranta beyond only stores‟ data.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The renewable energy industry in Zambia is poised for growth and offers many possibilities for Finnish firms willing to enter the market. The Zambian government’s deliberate policy measures aim at attracting foreign direct investment (FDI) into this sector. This study rationalises that this could be the pull factor for Finnish firms. The thesis gives an overview of the industry and investigates an appropriate mode of entry, basing its arguments on the comparison analysis of the two economies with the use of the world forum’s stages of economic development as a framework. The theoretical part of the study examines internationalisation theories, entry mode choice and factors influencing the choice. The multiple case study approach is implored, analysing four case companies from Finland with the use of extant literature on internationalisation relevant to the study. The research design involves the use of documentation, secondary data, interviews and observation. The results of the case analyses show that the Finnish firm’s most preferred entry mode initially is exporting because it is considered to be less risky. Additionally, the findings also reveal that the selection of a suitable mode of entry is dependent on the firms’ size, orientation and international experience and could therefore be considered to be subjective. Paramount is the act of gaining market knowledge. The study shows that only hydro-electrical, solar energies and biomass are by far the most used and known forms of renewable energy in Zambia, while other alternative sources still remain un-exploited thus highlighting a growth potential. However, policy formulation and the regulatory framework in the renewable energy sector were found to be wanting.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.
Resumo:
This thesis describes research in which genetic programming is used to automatically evolve shape grammars that construct three dimensional models of possible external building architectures. A completely automated fitness function is used, which evaluates the three dimensional building models according to different geometric properties such as surface normals, height, building footprint, and more. In order to evaluate the buildings on the different criteria, a multi-objective fitness function is used. The results obtained from the automated system were successful in satisfying the multiple objective criteria as well as creating interesting and unique designs that a human-aided system might not discover. In this study of evolutionary design, the architectures created are not meant to be fully functional and structurally sound blueprints for constructing a building, but are meant to be inspirational ideas for possible architectural designs. The evolved models are applicable for today's architectural industries as well as in the video game and movie industries. Many new avenues for future work have also been discovered and highlighted.