983 resultados para atom tracking
Resumo:
The charge-pump (CP) mismatch current is a dominant source of static phase error and reference spur in the nano-meter CMOS PLL implementations due to its worsened channel length modulation effect. This paper presents a charge-pump (CP) mismatch current reduction technique utilizing an adaptive body bias tuning of CP transistors and a zero CP mismatch current tracking PLL architecture for reference spur suppression. A chip prototype of the proposed circuit was implemented in 0.13 mu m CMOS technology. The frequency synthesizer consumes 8.2 mA current from a 13 V supply voltage and achieves a phase noise of -96.01 dBc/Hz @ 1 MHz offset from a 2.4 GHz RF carrier. The charge-pump measurements using the proposed calibration technique exhibited a mismatch current of less than 0.3 mu A (0.55%) over the VCO control voltage range of 0.3-1.0 V. The closed loop measurements show a minimized static phase error of within +/- 70 ps and a similar or equal to 9 dB reduction in reference spur level across the PLL output frequency range 2.4-2.5 GHz. The presented CP calibration technique compensates for the DC current mismatch and the mismatch due to channel length modulation effect and therefore improves the performance of CP-PLLs in nano-meter CMOS implementations. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.
Resumo:
We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min(-1). The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.
Resumo:
Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The serotonin(1A) receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin(1A) receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3s, to analyze the effect of cholesterol on the structure and dynamics of the serotonin(1A) receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin(1A) receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.
Resumo:
Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90 degrees latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and delta O-18 of soil carbonates, constrained by the abundances of C-13-O-18 bonds in palaeosol carbonates. Assuming that the palaeosol carbonates have a strong relationship with the composition of the meteoric water, delta O-18 carbonate of palaeosol can constrain paleo-latitudinal position. Weighted mean annual rainfall delta O-18 water values measured at several stations across the southern latitudes are used to derive a polynomial equation: delta(18)Ow = -0.006 x (LAT)(2) - 0.294 x (LAT) - 5.29 which is used for latitudinal reconstruction. We use this approach to show the northward migration of the Indian plate from 46.8 +/- 5.8 degrees S during the Permian (269 M. y.) to 30 +/- 11 degrees S during the Triassic (248 M. y.), 14.7 +/- 8.7 degrees S during the early Cretaceous (135 M. y.), and 28 +/- 8.8 degrees S during the late Cretaceous ( 68 M. y.). Soil carbonate delta O-18 provides an alternative method for tracing the latitudinal position of Indian plate in the past and the estimates are consistent with the paleo-magnetic records which document the position of Indian plate prior to 135 +/- 3 M. y.
Resumo:
Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.
Resumo:
The complete proof of the virial theorem in refined Thomas-Fermi-Dirac theory for all electrons of an atom in a solid is given.
Resumo:
The nearest-neighbour Lennard-Jones potential from the embedded-atom method is extended to a form that includes more than nearest neighbours. The model has been applied to study melting with molecular dynamics. The calculated melting point, fractional volume change on melting, heat of fusion and linear coefficients of thermal expansion are in good agreement with experimental data. We have found that the second and third neighbours influence the melting point distinctly.
Resumo:
In this paper, we describe models and algorithms for detection and tracking of group and individual targets. We develop two novel group dynamical models, within a continuous time setting, that aim to mimic behavioural properties of groups. We also describe two possible ways of modeling interactions between closely using Markov Random Field (MRF) and repulsive forces. These can be combined together with a group structure transition model to create realistic evolving group models. We use a Markov Chain Monte Carlo (MCMC)-Particles Algorithm to perform sequential inference. Computer simulations demonstrate the ability of the algorithm to detect and track targets within groups, as well as infer the correct group structure over time. ©2008 IEEE.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.
Resumo:
To study electron affinity kinetics, a shock tube method was applied, in which the test gas was ionized by a reflected shock wave and subsequently quenched by a strong rarefaction wave. As the quenching speed of 106 K/s was reached, a nonequilibrium ionization-recombination process occurred, which was dominated by ion recombination with electrons. A Langmuir electrostatic probe was used to monitor variation in the ion number density at the reflection shock region. The working state of the probe was analyzed...