911 resultados para artificially expanded genetic information system
Resumo:
NIH manual issuance 4101.
Resumo:
The road to electric rope shovel automation is marked with technological innovations that include an increase in operational information available to mining operations. The CRCMining Shovel Operator Information System not only collects machine operational data but also provides the operator with knowledge-of-performance and influences his/her performance to achieve higher productivity with reduced machine duty. The operator’s behaviour is one of the most important aspects of the man-machine interaction to be considered before semi- or fully-automated shovel systems can be realised. This paper presents the results of the rope shovel studies conducted by CRCMining between 2002 and 2004, provides information on current research to improve shovel performance and briefly discusses the implications of human-system interactions on future designs of autonomous machines.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
The development of an information system in Caribbean public sector organisations is usually seen as a matter of installing hardware and software according to a directive from senior management, without much planning. This causes huge investment in procuring hardware and software without improving overall system performance. Increasingly, Caribbean organisations are looking for assurances on information system performance before making investment decisions not only to satisfy the funding agencies, but also to be competitive in this dynamic and global business world. This study demonstrates an information system planning approach using a process-reengineering framework. Firstly, the stakeholders for the business functions are identified along with their relationships and requirements. Secondly, process reengineering is carried out to develop the system requirements. Accordingly, information technology is selected through detailed system requirement analysis. Thirdly, cost-benefit analysis, identification of critical success factors and risk analysis are carried out to strengthen the selection. The entire methodology has been demonstrated through an information system project in the Barbados drug service, a public sector organisation in the Caribbean.
Resumo:
To meet changing needs of customers and to survive in the increasingly globalised and competitive environment, it is necessary for companies to equip themselves with intelligent tools, thereby enabling managerial levels to use the tactical decision in a better way. However, the implementation of an intelligent system is always a challenge in Small- and Medium-sized Enterprises (SMEs). Therefore, a new and simple approach with 'process rethinking' ability is proposed to generate ongoing process improvements over time. In this paper, a roadmap of the development of an agent-based information system is described. A case example has also been provided to show how the system can assist non-specialists, for example, managers and engineers to make right decisions for a continual process improvement. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
Modern managers are under tremendous pressure in attempting to fulfil a profoundly complex managerial task, that of handling information resources. Information management, an intricate process requiring a high measure of human cognition and discernment, involves matching a manager's lack of information processing capacity against his information needs, with voluminous information at his disposal. The nature of the task will undoubtedly become more complex in the case of a large organisation. Management of large-scale organisations is therefore an exceedingly challenging prospect for any manager to be faced with. A system that supports executive information needs will help reduce managerial and informational mismatches. In the context of the Malaysian public sector, the task of overall management lies with the Prime Minister and the Cabinet. The Prime Minister's Office is presently supporting the Prime Minister's information and managerial needs, although not without various shortcomings. The rigid formalised structure predominant of the Malaysian public sector, so opposed to dynamic treatment of problematic issues as faced by that sector, further escalates the managerial and organisational problem of coping with a state of complexity. The principal features of the research are twofold: the development of a methodology for diagnosing the problem organisation' and the design of an office system. The methodological development is done in the context of the Malaysian public sector, and aims at understanding the complexity of its communication and control situation. The outcome is a viable model of the public sector. `Design', on the other hand, is developing a syntax or language for office systems which provides an alternative to current views on office systems. The design is done with reference to, rather than for, the Prime Minister's Office. The desirable outcome will be an office model called Office Communication and Information System (OCIS).
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
In the following paper a new class of executive information system is suggested. It is based on a selforganization in management and on a module modeling. The system is multifunctional and multidisciplinary. The structure elements of the system and the common features of the modules are discussed.
Resumo:
In this paper we consider a computer information system and a way to realize the security of the data in it with digital watermarking. A technique for spread spectrum watermarking is presented and its realization with MathLAB 6.5 is shown.