982 resultados para antiwear additives


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to study the sliding and the vibrating fretting tests mechanism of h-BN micro-particles when used as a lubricating grease-2 additive. Design/methodology/approach: The fretting tests were conducted on steel/steel contacts using both vibrating fretting apparatus and the shaftsleeve slide fitted tester. The wear scars were characterized with profilometry. The tribological properties of grease-2 compounded with h-BN additive were also compared to those obtained for the commercial product Militec-4. Findings: The experiment showed significant differences between the results obtained from the vibrating fretting and the shaft-sleeve sliding fitted tests. Adding h-BN to the lubricant leads to a better performance in the shaft-sleeve slide regime than in the steel/steel vibrating test condition. Originality/value: The results of the experimental studies demonstrate the potential of h-BN as an additive for preventing fretting sliding, and can very useful for further application of compound grease-2 with h-BN additive in industrial equipment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The idea that microbes induce disease has steered medical research toward the discovery of antibacterial products for the prevention and treatment of microbial infections. The twentieth century saw increasing dependency on antimicrobials as mainline therapy accentuating the notion that bacterial interactions with humans were to be avoided or desirably controlled. The last two decades, though, have seen a refocusing of thinking and research effort directed towards elucidating the critical inter-relationships between the gut microbiome and its host that control health/wellness or disease. This research has redefined the interactions between gut microbes and vertebrates, now recognizing that the microbial active cohort and its mammalian host have shared co-evolutionary metabolic interactions that span millennia. Microbial interactions in the gastrointestinal tract provide the necessary cues for the development of regulated pro- and anti-inflammatory signals that promotes immunological tolerance, metabolic regulation and other factors which may then control local and extra-intestinal inflammation. Pharmacobiotics, using nutritional and functional food additives to regulate the gut microbiome, will be an exciting growth area of therapeutics, developing alongside an increased scientific understanding of gut-microbiome symbiosis in health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past few years, plant biotechnology has gone beyond traditional agricultural production of food, feed and fibre, and moved to address more complex contemporary health, social and industrial challenges. The new era involves production of novel pharmaceutical products, speciality and fine chemicals, phytoremediation and production of renewable energy resources to replace non-renewable fossil fuels. Plants have been shown to provide a genuine and low-cost alternative production system for high-value products. Currently, the principal plant-made products include antibodies, feed additives, vaccine antigens and hormones for human and animal health, and industrial proteins. Despite the unique advantages of scalability, cost and product safety, issues of politics, environmental impact, regulation and socioeconomics still limit the adoption of biopharmaceuticals, especially in the developing world. Plant-based production systems have further complicated biosafety, gene flow and environmental impact assessments with generally genetically modified plants, topics that are already partially understood. This article provides a background to biopharming, highlighting basic considerations for risk assessment and regulation in developing countries, with an emphasis on plant-based vaccine production in South Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discussion of Attention-Deficit/Hyperactivity Disorder (ADHD) in the media, and thus much popular discourse, typically revolves around the possible causes of disruptive behaviour and the “behaviourally disordered” child. The usual suspects - too much television and video games, food additives, bad parenting, lack of discipline and single mothers – feature prominently as potential contributors to the spiralling rate of ADHD diagnosis in Western industrialised nations, especially the United States and Australia. Conspicuously absent from the field of investigation, however, is the scene of schooling and the influence that the discourses and practices of schooling might bring to bear upon the constitution of “disorderly behaviour” and subsequent recognition of particular children as a particular kind of “disorderly”. This paper reviews a sample of the literature surrounding ADHD, in order to question the function of this absence and, ultimately, make an argument for an interrogation of the school as a site for the production of disorderly objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire safety design is important to eliminate the loss of property and lives during fire events. Gypsum plasterboard is widely used as a fire safety material in the building industry all over the world. It contains gypsum (CaSO4.2H2O) and Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Currently plasterboard manufacturers use additives such as vermiculite to overcome shrinkage of gypsum core and glass fibre to bridge shrinkage cracks and enhance the integrity of board during calcination and after the loss of paper facings in fires. Past research has also attempted to reduce the thermal conductivity of plasterboards using fillers. However, no research has been undertaken to enhance the specific heat of plasterboard and the points of dehydration using chemical additives and fillers. Hence detailed experimental studies of powdered samples of plasterboard mixed with chemical additives and fillers in varying proportions were conducted. These tests showed the enhancement of specific heat of plasterboard. Numerical models were also developed to investigate the thermal performance of enhanced plasterboards under standard fire conditions. The results showed that the use of these enhanced plasterboards in steel wall systems can significantly improve their fire performance. This paper presents the details of this research and the results that can be used to enhance the fire safety of steel wall systems commonly used in buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM), in the substrate generation–tip collection (SG-TC) mode, has been used to detect the cuprous ion intermediate formed during the course of electrodeposition of Cu metal from aqueous solution. Addition of chloride is confirmed to strongly stabilize the ion in aqueous solution and enhance the rate of Cu electrodeposition. This SECM method in the SG-TC mode offers an alternative to the rotating ring disk electrode (RRDE) technique for in situ studies on the effect of plating bath additives in metal electrodeposition. An attractive feature of the SECM relative to the RRDE method is that it allows qualitative aspects of the electrodeposition process to be studied in close proximity to the substrate in a simple and direct fashion using an inexpensive probe, and without the need for forced convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-organization and dynamic processes of nano/micron-sized solid particles grown in low-temperature chemically active plasmas as well as the associated physico-chemical processes are reviewed. Three specific reactive plasma chemistries, namely, of silane (SiH4), acetylene (C 2H2), and octafluorocyclobutane (c-C4F 8) RF plasma discharges for plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon, hydrogenated and fluorinated carbon films, are considered. It is shown that the particle growth mechanisms and specific self-organization processes in the complex reactive plasma systems are related to the chemical organization and size of the nanoparticles. Correlation between the nanoparticle origin and self-organization in the ionized gas phase and improved thin film properties is reported. Self-organization and dynamic phenomena in relevant reactive plasma environments are studied for equivalent model systems comprising inert buffer gas and mono-dispersed organic particulate powders. Growth kinetics and dynamic properties of the plasma-assembled nanoparticles can be critical for the process quality in microelectronics as well as a number of other industrial applications including production of fine metal or ceramic powders, nanoparticle-unit thin film deposition, nanostructuring of substrates, nucleating agents in polymer and plastics synthesis, drug delivery systems, inorganic additives for sunscreens and UV-absorbers, and several others. Several unique properties of the chemically active plasma-nanoparticle systems are discussed as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanohybrids consisting of both carbon and pseudocapacitive metal oxides are promising as high-performance electrodes to meet the key energy and power requirements of supercapacitors. However, the development of high-performance nanohybrids with controllable size, density, composition and morphology remains a formidable challenge. Here, we present a simple and robust approach to integrating manganese oxide (MnOx) nanoparticles onto flexible graphite paper using an ultrathin carbon nanotube/reduced graphene oxide (CNT/RGO) supporting layer. Supercapacitor electrodes employing the MnOx/CNT/RGO nanohybrids without any conductive additives or binders yield a specific capacitance of 1070 F g−1 at 10 mV s−1, which is among the highest values reported for a range of hybrid structures and is close to the theoretical capacity of MnOx. Moreover, atmospheric-pressure plasmas are used to functionalize the CNT/RGO supporting layer to improve the adhesion of MnOx nanoparticles, which results in theimproved cycling stability of the nanohybrid electrodes. These results provide information for the utilization of nanohybrids and plasma-related effects to synergistically enhance the performance of supercapacitors and may create new opportunities in areas such as catalysts, photosynthesis and electrochemical sensors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To investigate methods for the recovery of airborne bacteria within pig sheds and to then use the appropriate methods to determine the levels of heterotrophs and Escherichia coli in the air within sheds. Methods and Results: AGI-30 impingers and a six-stage Andersen multi-stage sampler (AMS) were used for the collection of aerosols. Betaine and catalase were added to impinger collection fluid and the agar plates used in the AMS. Suitable media for enumerating E. coli with the Andersen sampler were also evaluated. The addition of betaine and catalase gave no marked increase in the recovery of heterotrophs or E. coli. No marked differences were found in the media used for enumeration of E. coli. The levels of heterotrophs and E. coli in three piggeries, during normal pig activities, were 2Æ2 · 105 and 21 CFU m)3 respectively. Conclusions: The failure of the additives to improve the recovery of either heterotrophs or E. coli suggests that these organisms are not stressed in the piggery environment. The levels of heterotrophs in the air inside the three Queensland piggeries investigated are consistent with those previously reported in other studies. Flushing with ponded effluent had no marked or consistent effect on the heterotroph or E. coli levels. Significance and Impact of the Study: Our work suggests that levels of airborne heterotrophs and E. coli inside pig sheds have no strong link with effluent flushing. It would seem unlikely that any single management activity within a pig shed has a dominant influence on levels of airborne heterotrophs and E. coli