927 resultados para antibody microarray
Resumo:
An evaluation of the sensitivity and the specificity of the Anisakis simplex antigens purified by affinity chromatography was performed using sera from patients diagnosed with Anisakis sensitisation and sera from patients previously diagnosed with different helminthic infections. Only the sera of the patients diagnosed with Schistosoma mansoni or Onchocerca volvulus parasitic infections were negative against the A. simplex antigen and its purified fractions (PAK antigen: A. simplex antigen purified using columns prepared with anti-A. simplex rabbit IgG and PAS antigen: PAK antigen purified using columns prepared with anti-Ascaris suum rabbit IgG). However all the sera were positive against the A. suum antigen. In all the sera from the patients diagnosed with Anisakis sensitisation, the antibody levels detected using the purified antigens (PAK and PAS antigens) were lower than the observed using the A. simplex crude extract with the highest diminution in the case of the IgG. When these same sera were tested against the A. simplex crude extract by Western blot, several bands of high molecular masses were observed as well as, intense bands at 60 and/or 40 kDa. A concentration of these last proteins was observed in the PAK and the PAS antigens. When the sensitivity and the specificity determinations were performed, only seven of the 38 patients diagnosed of Anisakis sensitisation were positive, as well as, the sera from the patients diagnosed with parasitisms by Echinococcus granulosus or Fasciola hepatica.
Resumo:
Lymphatic filariasis caused by nematode parasites Wuchereria bancrofti or Brugia malayi is a spectral disease and produces wide range of immune responses and varying levels ofmicrofilaraemia in infected individuals. The relationship between the immune response of host and the developmental stage of the parasite as well as the microfilariae (mf) density and specific location of the adult worms is yet to be understood. As an experimental model, B. malayi adapted in the experimental animal Mastomys coucha has been used widely for various studies in filariasis. The present study was to assess microfilaraemia as well as the humoral immune response of M. coucha during various stages of B. malayi development and their localization in different organs. The result showed that the density of mf in the circulating blood of the experimental animal depended upon the number of female worms as well as the location and co-existence of male and female worms. The mf density in the blood increased with the increase in the number of females. The clearance of inoculated infective stage (L3) or single sex infection or segregation of male and female to different organs of infected host resulted in amicrofilaraemic condition. With respect to antibody response, those animals cleared L3 after inoculation and those with adult worm as well as mf showed low antibody levels. But those with developmental fourth stage and/or adult worms without mf showed significantly higher antibody levels.
Resumo:
In Brazil, until 2004, the immunization policy against diphtheria involved childhood vaccination with no official routine booster dose administered after 15 years of age. This study assessed functional antibody levels against diphtheria among blood donors. A total of 140 blood samples were collected, and diphtheria antitoxin levels were evaluated by Vero cell neutralization test. The mean age of the population was 34 years old (range: 18-61 years); 37.8% females and 62.2% males. Overall, 30.7% (95%, CI: 23.4-38.7) individuals presented neutralizing antitoxin antibody titers < 0.01 IU/ml; 42.1% (95%, CI: 34.1-50.4) showed values between 0.01-0.09 IU/ml and, 27.1% (95%, CI: 20.2-34.9) had ³ 0.1 IU/ml. In the subgroup of individuals with history of diphtheria immunization during childhood (85%), a number of 28.5% showed unprotective levels of circulating neutralizing antibody (< 0.01 IU/ml). Despite the continuous progress of immunization programs directed to Brazilian population, currently healthy adults remain susceptible to diphtheria.
Resumo:
A Neospora caninum 17 kDa protein fraction (p17) has been described as an immunodominant antigen (IDA) under reducing and non-reducing conditions. The aim of the present study was to investigate the diagnostic utility of p17 in cattle. In order to achieve this, p17 was purified by electroelution from whole N. caninum tachyzoite soluble extract and a p17-based Western blot (WB-p17) was developed. The p17 recognition was measured by densitometry and expressed as OD values to check the validity of the WB-p17. A total of 131 sera including sequential samples from naturally- and experimentally-infected calves and breeding cattle were analysed by WB-p17 and compared with IFAT using whole formalin-fixed tachyzoites as a reference test. The results obtained highlight the feasibility of using the N. caninum p17 in a diagnostic test in cattle. Firstly, the assay based on the p-17 antigen discriminated between known positive and negative sera from different cattle populations, breeding cattle and calves. Secondly, the p17 antigen detected fluctuations in the antibody levels and seroconversion in naturally- and experimentally-infected cattle. Significant differences in p-17 antigen recognition were observed between naturally infected aborting and non-aborting cattle, as well as significant antibody fluctuations over time in experimentally infected cattle, which varied between groups. Furthermore, the results obtained with WB-p17 are in accordance with the results obtained with the IFAT, as high agreement values were obtained when all bovine subpopulations were included (kappa = 0.86).
Resumo:
Aim: The adrenolytic agent mitotane is widely used in the treatment of adrenocortical cancer; however, its mechanism of action is poorly elucidated. We have studied mitotane-induced mRNA expression changes in the NCI-H295R adrenocortical cancer cell line. Materials & methods: Cell viability and hormone assays were used to select the optimal mitotane concentration effectively inhibiting hormone secretion without affecting cell viability. RNA isolated from cultures treated for 48 and 72 h was subjected to Agilent 4×44K microarray platforms. Microarray results were validated by quantitative reverse-transcription PCR. Results: Altogether, 117 significantly differentially expressed genes were detected at 48 h and 72 h (p < 0.05) in mitotane-treated samples relative to controls. Three significantly underexpressed genes involved in steroid hormone biosynthesis (HSD3B1, HSD3B2 and CYP21A2) and four significantly overexpressed genes (GDF15, ALDH1L2, TRIB3 and SERPINE2) have been validated. Conclusion: Gene-expression changes might be involved in the adrenal action of mitotane and in the inhibition of hormone secretion. Original submitted 20 January 2012; Revision submitted 17 May 2012.
Resumo:
The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy.
Resumo:
Transfusion-transmitted malaria is rare, but it may produce severe problem in the safety of blood transfusion due to the lack of reliable procedure to evaluate donors potentially exposed to malaria. Here, we evaluated a new enzyme-linked immunosorbent assay malaria antibody test (ELISA malaria antibody test, DiaMed, Switzerland) to detect antibodies to Plasmodium vivax (the indigenous malaria) in the blood samples in the Republic of Korea (ROK). Blood samples of four groups were obtained and analyzed; 100 samples from P.vivax infected patients, 35 from recovery patients, 366 from normal healthy individuals, and 325 from domestic travelers of non-endemic areas residents to risky areas of ROK. P.vivax antibody levels by ELISA were then compared to the results from microscopic examination and polymerase chain reaction (PCR) test. As a result, the ELISA malaria antibody test had a clinical sensitivity of 53.0% and a clinical specificity of 94.0% for P.vivax. Twenty out of 325 domestic travelers (6.2%) were reactive and 28 cases (8.6%) were doubtful. Of the reactive and doubtful cases, only two were confirmed as acute malaria by both microscopy and PCR test. Thus we found that the ELISA malaria antibody test was insufficiently sensitive for blood screening of P.vivax in ROK.
Resumo:
PURPOSE: To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN: First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS: In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION: The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.
Resumo:
In the present study we investigated the flagellin-specific serum (IgG) and fecal (IgA) antibody responses elicited in BALB/c mice immunized with isogenic mutant derivatives of the attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) SL3261 strain expressing phase 1 (FliCi), phase 2 (FljB), or no endogenous flagellin. The data reported here indicate that mice orally immunized with recombinant S. Typhimurium strains do not mount significant systemic or secreted antibody responses to FliCi, FljB or heterologous B-cell epitopes genetically fused to FliCi. These findings are particularly relevant for those interested in the use of flagellins as molecular carriers of heterologous antigens vectored by attenuated S. Typhimurium strains.
Resumo:
Paracoccidioides brasiliensis, a thermal dimorphic fungal pathogen, produces a melanin-like pigment in vitro and in vivo. We investigated the involvement of carbohydrates and monoclonal antibody to CD18, on phagocytosis inhibition, involving macrophage receptors and the resistance of melanized fungal cells to chemically generated nitric oxide (NO), reactive oxygen species (ROS), hypochlorite and H2O2. Our results demonstrate that melanized yeast cells were more resistant than nonmelanized yeast cells to chemically generated NO, ROS, hypochlorite and H2O2, in vitro. Phagocytosis of melanized yeast cells was virtually abolished when mannan, N-acetyl glucosamine and anti-CD18 antibody were added together in this system. Intratracheal infection of BALB/c mice, with melanized yeast cells, resulted in higher lung colony forming units, when compared to nonmelanized yeast cells. Therefore, melanin is a virulence factor of P. brasiliensis.
Resumo:
Anisakis simplex is a nematode parasite that can infect humans who have eaten raw or undercooked seafood. Larvae invading the gastrointestinal mucosa excrete/secrete proteins that are implicated in the pathogenesis of anisakiasis and can induce IgE-mediated symptoms. Since Ani s 1 is a potent secreted allergen with important clinical relevance, its measurement could assess the quality of allergenic products used in diagnosis/immunotherapy of Anisakis allergy and track the presence of A. simplex parasites in fish foodstuffs. An antibody-based ELISA for quantification of Ani s 1 has been developed based on monoclonal antibody 4F2 as capture antibody and biotin-labelled polyclonal antibodies against Ani s 1 as detection reagent. The dose-response standard curves, obtained with natural and recombinant antigens, ranged from 4 to 2000 ng/ml and were identical and parallel to that of the A. simplex extract. The linear portion of the dose-response curve with nAni s 1 was between 15 and 250 ng/ml with inter-assay and intra-assays coefficients of variation less than 20% and 10%, respectively. The assay was specific since there was no cross-reaction with other extracts (except Ascaris extracts) and was highly sensitive (detection limit of 1·8 ng/ml), being able to detect Ani s 1 in fish extracts from codfish and monkfish.
Resumo:
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (~30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis.
Resumo:
Abdominal angiostrongyliasis is a potentially fatal zoonotic disease with a broad geographical distribution throughout Central and South America. This study assessed the performance of Angiostrongylus costaricensis eggs as the antigen in an indirect immunofluorescence assay for the determination of parasite-specific IgG and IgG1 antibodies. For prevalence studies, an IgG antibody titre > 16 was identified as the diagnostic threshold with the best performance, providing 93.7% sensitivity and 84.6% specificity. Cross reactivity was evaluated with 65 additional samples from patients with other known parasitic infections. Cross reactivity was observed only in samples from individuals infected with Strongyloides stercoralis. For clinical diagnosis, we recommend the determination of IgG only as a screening test. IgG1 determination may be used to increase the specificity of the results for patients with a positive screening test.
Resumo:
SUMMARY Interest in developing intervention strategies against malaria by targeting the liver stage of the Plasmodium life cycle has been fueled by studies which show that sterile protective immunity can be achieved by immunization with radiation-attenuated sporozoites. Anti-malarial drugs and insecticides have been widely used to control the disease, but in the hope of developing a more cost-effective intervention strategy, vaccine development has taken centre stage in malaria research. There is currently no vaccine against malaria. Attenuated sporozoite-induced immunity is achieved by antibodies and T cells against malaria liver stage antigens, the most abundant being the circumsporozoite protein (CSP), and many vaccine formulations aim at mimicking this immunity. However, the mechanisms by which the antibody and T cell immune responses are generated after infection by sporozoites, or after immunization with different vaccine formulations are still not well understood. The first part of this work aimed at determining the ability of primary hepatocytes from BALB/c mice to process and present CSP-derived peptides after infection with P. berghei sporozoites. Both infected hepatocytes and those traversed by sporozoites during migration were found to be capable of processing and presenting the CSP to specific CD8+ T cells in vitro. The pathway of processing and presentation involved the proteasome, aspartic proteases and transport through a post-Endoplasmic Reticulum (ER) compartment. These results suggest that in vivo, infected hepatocytes contribute to the elicitation and expansion of a T cell response. In the second part, the antibody responses of CB6F1 mice to synthetic peptides corresponding to the N- and C-terminal domains of P. berghei and P. falciparum CS proteins were characterized. Mice were immunized with single peptides or a combination of N- and C-terminal peptides. The peptides were immunogenic in mice and the antisera generated could recognize the native CSP on the sporozoite surface. Antisera generated against the N-terminal peptides or against the combinations inhibited sporozoite invasion of hepatocytes in vitro. In vivo, more mice immunized with single P. berghei peptides were protected from infection upon a challenge with P. berghei sporozoites, than mice immunized with a combination of N- and C-terminal peptides. Furthermore, P. falciparum N-terminal peptides were recognized by serum samples from people living in malaria-endemic areas. Importantly, recognition of a peptide from the N-terminal fragment of the P. falciparum CSP by sera from children living in a malaria-endemic region was associated with protection from disease. These results underline the potential of using such peptides as malaria vaccine candidates. RESUME L'intérêt de développer des stratégies d'intervention contre la malaria ciblant le stade pré-erythrocytaire a été alimenté par des études qui montrent qu'il est possible d'obtenir une immunité par l'injection de sporozoites irradiés. Les médicaments et les insecticides anti-paludiques ont été largement utilisés pour contrôler la maladie, mais dans l'espoir de développer une stratégie d'intervention plus rentable, le développement de vaccins a été placé au centre des recherches actuelles contre la malaria. A l'heure actuelle, il n'existe aucun vaccin contre la malaria. L'immunité induite par les sporozoites irradiés est due à l'effet combiné d'anticorps et de cellules T qui agissent contre les antigènes du stade hépatique dont le plus abondant est la protéine circumsporozoite (CSP). Beaucoup de formulations de vaccin visent à imiter l'immunité induite par les sporozoites irradiés. Cependant, les mécanismes par lesquels les anticorps et les cellules T sont génerés après infection par les sporozoites ou après immunisation avec des formulations de vaccin ne sont pas bien compris. La première partie de ce travail a visé à déterminer la capacité de hépatocytes primaires provenant de souris BALB/c à "processer" et à présenter des peptides dérivés de la CSP, après infection par des sporozoites de Plasmodium berghei. Nous avons montré que in vitro, les hépatocytes infectés et ceux traversés par les sporozoites pendant leur migration étaient capables de "processer" et de présenter la CSP aux cellules T CD8+ spécifiques. La voie de présentation implique le protéasome, les protéases de type aspartique et le transport à travers un compartiment post-reticulum endoplasmique. Ces résultats suggèrent que in vivo, les hépatocytes infectés contribuent à l'induction et à l'expansion d'une réponse immunitaire spécifique aux cellules T. Dans la deuxième partie, nous avons caractérisé les réponses anticorps chez les souris de la souche CB6F1 face aux peptides N- et C-terminaux des protéines circumsporozoites de Plasmodium berghei et Plasmodium falciparum. Les souris ont été immunisées avec les peptides individuellement ou en combinaison. Les peptides utilisés étaient immunogéniques chez les souris, et les anticorps produits pouvaient reconnaître la protéine CSP native à la surface des sporozoites. In vitro, les sera contre les peptides N-teminaux et les combinaisons étaient capables d'inhiber l'invasion de hépatocytes par les sporozoites. In vivo, plus de souris immunisées avec les peptides individuels de la CSP de P. berghei étaient protégées contre la malaria que les souris immunisées avec une combinaison de peptides N- et C-terminaux. De plus, les peptides N-terminaux de la CSP de P. falciparum ont été reconnus par les sera de personnes vivant dans des régions endémiques pour la malaria. Il est intéressant de voir que la reconnaissance d'un peptide N-terminal de P. falciparum par des sera d'enfants habitant dans des régions endémiques était associé à la protection contre la maladie. Ces résultats soulignent le potentiel de ces peptides comme candidats-vaccin contre la malaria.
Resumo:
Because an enriched environment (EE) enhances T-cell activity and T-lymphocytes contribute to immunopathogenesis during heterologous dengue virus (DENV) infections, we hypothesised that an EE increases dengue severity. To compare single serotype (SS) and antibody-enhanced disease (AED) infections regimens, serial intraperitoneal were performed with DENV3 (genotype III) infected brain homogenate or anti-DENV2 hyperimmune serum followed 24 h later by DENV3 (genotype III) infected brain homogenate. Compared AED for which significant differences were detected between the EE and impoverished environmental (IE) groups (Kaplan-Meyer log-rank test, p = 0.0025), no significant differences were detected between the SS experimental groups (Kaplan-Meyer log-rank test, p = 0.089). Survival curves from EE and IE animals infected with the AED regimen were extended after corticoid injection and this effect was greater in the EE than in the IE group (Kaplan-Meyer log-rank test, p = 0.0162). Under the AED regimen the EE group showed more intense clinical signs than the IE group. Dyspnoea, tremor, hunched posture, ruffled fur, immobility, pre-terminal paralysis, shock and death were associated with dominant T-lymphocytic hyperplasia and presence of viral antigens in the liver and lungs. We propose that the increased expansion of these memory T-cells and serotype cross-reactive antibodies facilitates the infection of these cells by DENV and that these events correlate with disease severity in an EE.