903 resultados para analytical decomposition
Resumo:
Peatlands are ecosystems formed by successive pedogenetic processes, resulting in progressive accumulation of plant remains in the soil column under conditions that inhibit the activity of most microbial decomposers. In Diamantina, state of Minas Gerais, Brazil, a peatland is located at 1366 m asl, in a region with a quartz-rich lithology and characteristic wet grassland vegetation. For this study, the peat area was divided in 12 transects, from which a total of 90 soil samples were collected at a distance of 20 m from each other. The properties rubbed fiber content (RF), bulk density (Bd), mineral material (MM), organic matter (OM), moisture (Moi) and maximum water holding capacity (MWHC) were analyzed in all samples. From three selected profiles of this whole area, samples were collected every 27 cm from the soil surface down to a depth of 216 cm. In these samples, moisture was additionally determined at a pressure of 10 kPa (Moi10) or 1500 kPa (Moi1500), using Richards' extractor and soil organic matter was fractionated by standard procedures. The OM decomposition stage of this peat was found to increase with soil depth. Moi and MWHC were highest in layers with less advanced stages of OM decomposition. The humin levels were highest in layers in earlier stages of OM decomposition and with higher levels of water retention at MWHC and Moi10. Humic acid contents were higher in layers at an intermediate stage of decomposition of organic matter and with lowest levels of water retention at MWHC, Moi10 and Moi1500.
Resumo:
The real part of the optical potential for heavy ion elastic scattering is obtained by double folding of the nuclear densities with a density-dependent nucleon-nucleon effective interaction which was successful in describing the binding, size, and nucleon separation energies in spherical nuclei. A simple analytical form is found to differ from the resulting potential considerably less than 1% all through the important region. This analytical potential is used so that only few points of the folding need to be computed. With an imaginary part of the Woods-Saxon type, this potential predicts the elastic scattering angular distribution in very good agreement with experimental data, and little renormalization (unity in most cases) is needed.
Resumo:
The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol). The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing). Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1) sidedressed as urea (rates split in four applications at harvests in winter/spring), as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping). Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.
Resumo:
We prove for any pure three-quantum-bit state the existence of local bases which allow one to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.
Resumo:
We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.
Resumo:
Poultry litter is an important nutrient source in agriculture, although little information is available regarding its decomposition rate and nutrient release. To evaluate these processes, poultry litter (PL) was applied to the soil to supply 100, 200 and 300 kg ha-1 N contained in 4,953, 9,907 and 14,860 kg ha-1 PL, respectively. The litter bag technique was used to monitor the process of decomposition and nutrient release from the litter. These bags were left on the soil surface and collected periodically (after 15, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and 365 days). The dry matter (DM) loss was highest (35 %) after the first 30 days of field incubation. The highest nutrient release occurred in the first 60 days on the field, when 40, 34, 91, and 39 %, respectively, of N, P, K, and Ca of the initial PL dry matter (4,860 kg ha-1) was already released to the soil. In absolute terms, these percentages represent 40, 23, 134, and 69 kg ha-1 of N, P, K, and Ca and these values doubled and tripled as the PL fertilization rates increased to 9,907 and 14,860 kg ha-1, respectively. After one year of field incubation, the residual contents in the litter were 27, 15, 18 and 30 % of the initial DM , and N, P and Ca, respectively. The release rate of K was the fastest and 91 % of the K had been released from the PL after 30 days of field incubation.
Resumo:
There has been a recent revolution in the ability to manipulate micrometer-sized objects on surfaces patterned by traps or obstacles of controllable configurations and shapes. One application of this technology is to separate particles driven across such a surface by an external force according to some particle characteristic such as size or index of refraction. The surface features cause the trajectories of particles driven across the surface to deviate from the direction of the force by an amount that depends on the particular characteristic, thus leading to sorting. While models of this behavior have provided a good understanding of these observations, the solutions have so far been primarily numerical. In this paper we provide analytic predictions for the dependence of the angle between the direction of motion and the external force on a number of model parameters for periodic as well as random surfaces. We test these predictions against exact numerical simulations.
Resumo:
In soils under no-tillage (NT), the continuous crop residue input to the surface layer leads to carbon (C) accumulation. This study evaluated a soil under NT in Ponta Grossa (State of Paraná, Brazil) for: 1) the decomposition of black oat (Avena strigosa Schreb.) residues, 2) relation of the biomass decomposition effect with the soil organic carbon (SOC) content, the particulate organic carbon (POC) content, and the soil carbon stratification ratio (SR) of an Inceptisol. The assessments were based on seven samplings (t0 to t6) in a period of 160 days of three transects with six sampling points each. The oat dry biomass was 5.02 Mg ha-1 at t0, however, after 160 days, only 17.8 % of the initial dry biomass was left on the soil surface. The SOC in the 0-5 cm layer varied from 27.56 (t0) to 30.07 g dm-3 (t6). The SR increased from 1.33 to 1.43 in 160 days. There was also an increase in the POC pool in this period, from 8.1 to 10.7 Mg ha-1. The increase in SOC in the 0-5 cm layer in the 160 days was mainly due to the increase of POC derived from oat residue decomposition. The linear relationship between SOC and POC showed that 21 % of SOC was due to the more labile fraction. The results indicated that the continuous input of residues could be intensified to increase the C pool and sequestration in soils under NT.
Resumo:
Biological markers for the status of vitamins B12 and D: the importance of some analytical aspects in relation to clinical interpretation of results When vitamin B12 deficiency is expressed clinically, the diagnostic performance of total cobalamin is identical to that of holotranscobalamin II. In subclinical B12 deficiency, the two aforementioned markers perform less well. Additional analysis of a second, functional marker (methylmalonate or homocysteine) is recommended. Different analytical approaches for 25-hydroxyvitamin D quantification, the marker of vitamin D deficiency, are not yet standardized. Measurement biases of up to +/- 20% compared with the original method used to establish threshold values are still observed.
Resumo:
The integral representation of the electromagnetic two-form, defined on Minkowski space-time, is studied from a new point of view. The aim of the paper is to obtain an invariant criteria in order to define the radiative field. This criteria generalizes the well-known structureless charge case. We begin with the curvature two-form, because its field equations incorporate the motion of the sources. The gauge theory methods (connection one-forms) are not suited because their field equations do not incorporate the motion of the sources. We obtain an integral solution of the Maxwell equations in the case of a flow of charges in irrotational motion. This solution induces us to propose a new method of solving the problem of the nature of the retarded radiative field. This method is based on a projection tensor operator which, being local, is suited to being implemented on general relativity. We propose the field equations for the pair {electromagnetic field, projection tensor J. These field equations are an algebraic differential first-order system of oneforms, which verifies automatically the integrability conditions.
Resumo:
We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the environment. Subtleties related to divergences that appear when summing over all the modes are made explicit and clarified. Being closely connected with models used in the literature, we show how to completely reconcile the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with those obtained by other standard functional techniques.
Resumo:
A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa) and hairy vetch (Vicia villosa) residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg) and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content) analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS), in vines rows with plastic shelter (VPRS), and in the between-row areas (BR). We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca) in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the flowering of the grapevines, which is one of the phenological stages of greatest demand for nutrients.
Resumo:
Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking.