231 resultados para aminopeptidase ER2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nasal absorption of larger peptide and protein drugs is generally low. The importance of the mucus layer and enzymic degradation in reducing absorption were investigated. Reversed-phase high-performance liquid chromatographic (HPLC) methods were developed to assay a variety of compounds. Pig gastric mucus (PGM) was selected to investigate the importance of the mucus layer. A method of treating and storing PGM was developed and evaluated which was representative of the gel in vivo. The nature of the mucus barrier was evaluated in vitro with three-compartment diffusion cells and a series of compounds with differing physicochemical properties. Mucus retarded the diffusion of all the compounds with molecular weight and charge exerting a marked effect. Binding to mucus was investigated by a centrifugation method. All of the compounds tested were found to bind to mucus with the exception of the negatively charged molecule benzoic acid. The small peptides did not demonstrate greater binding to mucus than any of the other compounds evaluated. The effect of some absorption enhancers upon the rate of diffusion of tryptophan through mucus was determined in vi tro. At the concentrations employed the enhancers EDTA, N-acetylcysteine and taurodeoxycholic acid exerted no effect, whilst taurocholic acid and cholic acid, were found to slightly reduce the rate of diffusion. The intracellular and luminal proteolytic activity of the nose was investigated in the sheep animal model with a nasal mucosal homogenate and a nasal wash preparation respectively and a series of chemically similar peptides. Hydrolysis was also investigated with the proteolytic enzymes carboxypeptidase A, cytosolic leucine aminopeptidase and microsomal leucine aminopeptidase. Sheep nasal mucosa possesses significant peptide hydrolase activity capable of degrading all the substrates tested. Considerable variation in susceptibility was observed. Degradation occurred excl us i ve ly at the pept ide bond between the aromatic amino ac id and glycine, indicating some specificity for aromatic amino acids. Hydrolysis profiles indicated the presence of both aminopeptidase and carboxypeptidase enzymes. The specific activity of the microsomal fraction was found to be greater than the cytosolic fraction. Hydrolysis in the nasal wash indicated the presence of either luminal or loosely-bound proteases, which can degrade peptide substrates. The same specificity for aromatic amino acids was observed and aminopeptidase activity demonstrated. The specific activity of the nasal wash was smaller than that of the homogenate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5-10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment-related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 µg Gum Xanthan eq /l compared to 269 µg Gum Xanthan eq /l in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The placenta is an essential organ that provides nutrients and oxygen to the developing fetus and removes toxic waste products from the fetal circulation. Maintaining placental blood osmotic pressure and blood flow is crucial for viable offspring. The renin-angiotensin system (RAS) in the placenta is a key player in the regulation of maternal-fetal blood flow during pregnancy. Therefore, the aim of this study was to determine if RAS genes are differentially expressed in mid to late gestation in rat placenta. METHODS: Whole placental tissue samples from pregnant Sprague Dawley rats at embryonic (E) days 14.25, 15.25, 17.25 and 20 (n = 6 for each gestational age) were used for genome-wide gene expression by microarray. RAS genes with expression differences of >2 fold were further analyzed. Quantitative Real-Time PCR (qPCR) was performed on independent samples to confirm and validate microarray data. Immunohistochemisty and Western blotting were performed on a differentially expressed novel RAS pathway gene (ANPEP). RESULTS: Six out of 17 genes of the RAS pathway were differentially expressed at different gestational ages. Gene expression of four genes (Angiotensin converting enzyme (Ace), angiotensin converting enzyme 2 (Ace2), membrane metalloendopeptidase (Mme) and angiotensin II receptor 1A (Agtr1a)) were significantly upregulated at E20 whereas two others (Thimet oligopeptidase 1 (Thop1) and Alanyl aminopeptidase (Anpep)) were downregulated at E20 prior to the onset of labour. These changes were confirmed by qPCR. Western blots revealed no overall differences in ANPEP protein expression in the placentae. Immunohistochemical studies, however, indicated that the localization of ANPEP differed at E17.25 and E20 as ANPEP localization in the giant trophoblast cell of the junctional zone was no longer detectable at E20. CONCLUSIONS: The current study investigated the expression of members of the RAS pathway in rat placentae and observed significantly altered expression of 6 RAS genes at 4 gestational ages. These findings present the need for further comprehensive investigation of RAS genes in normal and complicated pregnancies.