566 resultados para aicraft propulsion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand for optimising complete systems and the devices within that system, including capturing the interactions between the various multi-disciplinary (MD) components involved. Furthermore confidence in robust solutions is esential. As a consequence the computational cost rapidly increases and in many cases becomes infeasible to perform such conceptual designs. A coherent design methodology is proposed, where the aim is to improve the design process by effectively exploiting the potential of computational synthesis, search and optimisation and conventional simulation, with a reduction of the computational cost. This optimization framework consists of a hybrid optimization algorithm to handles multi-fidelity simulations. Simultaneously and in order to handles uncertainty without recasting the model and at affordable computational cost, a stochastic modelling method known as non-intrusive polynomial chaos is introduced. The effectiveness of the design methodology is demonstrated with the optimisation of a submarine propulsion system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. © 2013 American Society of Mechanical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major challenges in hig4h-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of non-uniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 45 dB in sound power level due to the non-uniform inflow, farfield noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be 2 blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in non-uniform flow showed that the effects of non-uniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that non-linear, coupled aerodynamic and aeroacoustic computations, such as those presented in this paper, are necessary to assess the propagation through non-uniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computations are made for chevron and coflowing jet nozzles. The latter has a bypass ratio of 6:1. Also, unlike the chevron nozzle, the core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large-eddy resolving approach is used with circa 12 × 10 6 cell meshes. Because the codes being used tend toward being dissipative the subgrid scale model is abandoned, giving what can be termed numerical large-eddy simulation. To overcome near-wall modeling problems a hybrid numerical large-eddy simulation-Reynolds-averaged Navier-Stokes related method is used. For y + ≤ 60 a Reynolds-averaged Navier-Stokes model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi equation, an extension of the eikonal equation. For both nozzles, results show encouraging agreement with measurements of other workers. The eikonal equation is also used for ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. © 2011 by Cambridge University.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in the use of 242mAm as a nuclear fuel. Because of its very high thermal fission cross section and its large number of neutrons released per fission, it can be used for various unique applications, such as space propulsion, medical applications, and compact energy sources. Since the thermal absorption cross section of 242mAm is very high, the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. However, fast spectrum reactors are not readily available. In this paper, we explore the possibility of producing 242mAm in existing pressurized water reactors (PWRs) with minimal interference in reactor performance. As suggested in previous studies on the subject, the 242mAm breeding targets are shielded with strong thermal absorbers in order to suppress the thermal neutron flux that causes 242mAm destruction. Since 242mAm enrichment within the Am target mainly depends on the neutron energy distribution, which in turn depends on the Am target thickness and on the neutron filter cutoff energy (thermal absorber type), this unique Am target design was developed. In our study, Cd, Sm, and Gd were considered as thermal neutron filters, as suggested by Cesana et al. The most favorable results were obtained by irradiating Am targets covered either with Gd or Cd. In these cases, up to 8.65% enrichment of 242mAm is obtained after 4.5 yr (three successive PWR fuel cycles) of irradiation. It was also found that significant quantities [up to 1.3 kg/GW (electric)-yr] of 242mAm can be obtained in PWR reactors without notable interference with reactor performance. However, in order to maintain the original fuel cycle length, the enrichment of the driver (UO2) fuel must be increased by ∼1%, raised from the conventional 4.5 to 5.5%, depending on the thermal neutron filter used. The most important reactivity feedback coefficients for fuel assemblies containing the 242mAm breeding targets were evaluated and found to be close to those of a standard PWR. Another product of neutron capture in the 241Am reaction is 238Pu. It was found that in a typical 1000 MW (electric) PWR core with one-third of the fuel assemblies containing 241Am targets, up to 15.1 kg of 238Pu enriched to 80% can be produced per year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents simplified 242mAm-fueled nuclear battery concept design featuring direct fission products energy conversion and passive heat rejection. Optimization of the battery operating characteristics and dimensions was performed. The calculations of power conversion efficiency under thermal and nuclear design constraints showed that 5.6 W e/kg power density can be achieved, which corresponds to conversion efficiency of about 4%. A system with about 190 cm outer radius translates into 17.8 MT mass per 100 kW e. Total power scales linearly with the outer surface area of the battery through which the residual heat is rejected. Tradeoffs between the battery lifetime, mass, dimensions, power rating, and conversion efficiency are presented and discussed. The battery can be used in a wide variety of interplanetary missions with power requirements in the kW to MW range. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing interest in using 242mAm as a nuclear fuel. The advantages of 242mAm as a nuclear fuel derive from the fact that 242mAm has the highest thermal fission cross section. The thermal capture cross section is relatively low and the number of neutrons per thermal fission is high. These nuclear properties make it possible to obtain nuclear criticality with ultra-thin fuel elements. The possibility of having ultra-thin fuel elements enables the use of these fission products directly, without the necessity of converting their energy to heat, as is done in conventional reactors. There are three options of using such highly energetic and highly ionized fission products. 1. Using the fission products themselves for ionic propulsion. 2. Using the fission products in an MHD generator, in order to obtain electricity directly. 3. Using the fission products to heat a gas up to a high temperature for propulsion purposes. In this work, we are not dealing with a specific reactor design, but only calculating the minimal fuel elements' thickness and the energy of the fission products emerging from these fuel elements. It was found that it is possible to design a nuclear reactor with a fuel element of less than 1 μm of 242mAm. In such a fuel element, 90% of the fission products' energy can escape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The viability of Boundary Layer Ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60-degree inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect which occurs throughout the annulus despite the localised nature of the inlet distortion. Increased loss generation in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. Copyright © 2012 by ASME.