776 resultados para agent-based modelling
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
The contextuality of changing attitudes makes them extremely difficult to model. This paper scales up Quantum Decision Theory (QDT) to a social setting, using it to model the manner in which social contexts can interact with the process of low elaboration attitude change. The elements of this extended theory are presented, along with a proof of concept computational implementation in a low dimensional subspace. This model suggests that a society's understanding of social issues will settle down into a static or frozen configuration unless that society consists of a range of individuals with varying personality types and norms.
Resumo:
This paper presents simulation results for future electricity grids using an agent-based model developed with MODAM (MODular Agent-based Model). MODAM is introduced and its use demonstrated through four simulations based on a scenario that expects a rise of on-site renewable generators and electric vehicles (EV) usage. The simulations were run over many years, for two areas in Townsville, Australia, capturing variability in space of the technology uptake, and for two charging methods for EV, capturing people's behaviours and their impact on the time of the peak load. Impact analyses of these technologies were performed over the areas, down to the distribution transformer level, where greater variability of their contribution to the assets peak load was observed. The MODAM models can be used for different purposes such as impact of renewables on grid sizing, or on greenhouse gas emissions. The insights gained from using MODAM for technology assessment are discussed.
Resumo:
This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.
Resumo:
O Estado do Rio de Janeiro possui indicadores de produção muito baixos na realização de exames de câncer de mama. Na tentativa de melhorar o acesso aos exames, principalmente em regiões com baixa densidade populacional onde a aquisição de mamógrafos não é custo-efetiva, o uso da mamografia móvel é uma alternativa para aumentar a execução de exames de rastreamento de câncer de mama. O objetivo desta pesquisa é a construção de um modelo computacional para definir a alocação de mamógrafos móveis. O Modelo considera as variáveis associadas com os custos e prazos, indicando quando, onde e por quanto tempo, as unidades móveis de mamografia devem permanecer em cada cidade. O modelo foi construído no software de modelagem e simulação Anylogic, usando técnicas de modelagem baseada em agentes. O principal resultado é determinar o percurso de cada veículo disponível, para oferecer a cobertura desejada em cada cidade. Todas as entradas são parametrizadas, permitindo simular diferentes cenários e fornecer informações importantes para o processo de tomada de decisão. O horizonte de tempo, número de mamógrafos (fixos e móveis), a cobertura desejada da população, a capacidade de produção de cada dispositivo, a adesão da população urbana e rural, entre outras variáveis, foram consideradas no modelo. Os dados da Região Serrana do Rio de Janeiro foram usados nas simulações, onde menos de metade das cidades possuem mamógrafos fixos. Com o modelo proposto foi possível determinar a distribuição de cada dispositivo físico e o número ótimo de unidades móveis de mamografia para oferecer cobertura à totalidade da população no ciclo de dois anos. O número de mamógrafos para oferecer cobertura de toda a população da região poderia ser reduzido pela metade com o modelo de alocação proposto neste trabalho. A utilização de mamografia móvel, em conjunto com a rede existente de mamógrafos fixos, procura maximizar a disponibilização de exames de testes de diagnóstico de câncer de mama no estado do Rio de Janeiro. O desenvolvimento de um modelo de roteamento que aperfeiçoa a cobertura de rastreio do câncer de mama é apresentado como um complemento importante na tentativa de melhorar o acesso à população residente em áreas urbanas e rurais dos municípios.
Resumo:
While the incorporation of mathematical and engineering methods has greatly advanced in other areas of the life sciences, they have been under-utilized in the field of animal welfare. Exceptions are beginning to emerge and share a common motivation to quantify 'hidden' aspects in the structure of the behaviour of an individual, or group of animals. Such analyses have the potential to quantify behavioural markers of pain and stress and quantify abnormal behaviour objectively. This review seeks to explore the scope of such analytical methods as behavioural indicators of welfare. We outline four classes of analyses that can be used to quantify aspects of behavioural organization. The underlying principles, possible applications and limitations are described for: fractal analysis, temporal methods, social network analysis, and agent-based modelling and simulation. We hope to encourage further application of analyses of behavioural organization by highlighting potential applications in the assessment of animal welfare, and increasing awareness of the scope for the development of new mathematical methods in this area.
Resumo:
The formation rate of university spin-out firms has increased markedly over the past decade. While this is seen as an important channel for the commercialisation of academic research, concerns have centred around high failure rates and no-to-low growth among those which survive compared to other new technology based firms. Universities have responded to this by investing in incubators to assist spin-outs to overcome their liability of newness. Yet how effective are incubators in supporting these firms? Here we examine this in terms of the structural networks that spin-out firms form, the role of the incubator in this and the effect of this on the spin-out process.
Estado situacional de los modelos basados en agentes y su impacto en la investigación organizacional
Resumo:
En un mundo hiperconectado, dinámico y cargado de incertidumbre como el actual, los métodos y modelos analíticos convencionales están mostrando sus limitaciones. Las organizaciones requieren, por tanto, herramientas útiles que empleen tecnología de información y modelos de simulación computacional como mecanismos para la toma de decisiones y la resolución de problemas. Una de las más recientes, potentes y prometedoras es el modelamiento y la simulación basados en agentes (MSBA). Muchas organizaciones, incluidas empresas consultoras, emplean esta técnica para comprender fenómenos, hacer evaluación de estrategias y resolver problemas de diversa índole. Pese a ello, no existe (hasta donde conocemos) un estado situacional acerca del MSBA y su aplicación a la investigación organizacional. Cabe anotar, además, que por su novedad no es un tema suficientemente difundido y trabajado en Latinoamérica. En consecuencia, este proyecto pretende elaborar un estado situacional sobre el MSBA y su impacto sobre la investigación organizacional.
Resumo:
La gestió de l'aigua residual és una tasca complexa. Hi ha moltes substàncies contaminants conegudes però encara moltes per conèixer, i el seu efecte individual o col·lgectiu és difícil de predir. La identificació i avaluació dels impactes ambientals resultants de la interacció entre els sistemes naturals i socials és un assumpte multicriteri. Els gestors ambientals necessiten eines de suport pels seus diagnòstics per tal de solucionar problemes ambientals. Les contribucions d'aquest treball de recerca són dobles: primer, proposar l'ús d'un enfoc basat en la modelització amb agents per tal de conceptualitzar i integrar tots els elements que estan directament o indirectament involucrats en la gestió de l'aigua residual. Segon, proposar un marc basat en l'argumentació amb l'objectiu de permetre als agents raonar efectivament. La tesi conté alguns exemples reals per tal de mostrar com un marc basat amb agents que argumenten pot suportar diferents interessos i diferents perspectives. Conseqüentment, pot ajudar a construir un diàleg més informat i efectiu i per tant descriure millor les interaccions entre els agents. En aquest document es descriu primer el context estudiat, escalant el problema global de la gestió de la conca fluvial a la gestiódel sistema urbà d'aigües residuals, concretament l'escenari dels abocaments industrials. A continuació, s'analitza el sistema mitjançant la descripció d'agents que interaccionen. Finalment, es descriuen alguns prototips capaços de raonar i deliberar, basats en la lògica no monòtona i en un llenguatge declaratiu (answer set programming). És important remarcar que aquesta tesi enllaça dues disciplines: l'enginyeria ambiental (concretament l'àrea de la gestió de les aigües residuals) i les ciències de la computació (concretament l'àrea de la intel·ligència artificial), contribuint així a la multidisciplinarietat requerida per fer front al problema estudiat. L'enginyeria ambiental ens proporciona el coneixement del domini mentre que les ciències de la computació ens permeten estructurar i especificar aquest coneixement.
Resumo:
Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in future analyses of vole dynamics.
Resumo:
Small and medium-sized companies and other enterprises (SMEs) around the world are exposed to flood risk and many of the 4.5 million in the UK are at risk. As SMEs represent almost half of total business turnover in the UK, their protection is a vital part of the drive for greater climate change resilience. However, few have measures in place to ensure the continuity of their activities during a flood and its aftermath. The SESAME project aims to develop tools that encourage businesses to discover ways of becoming more resilient to floods and to appreciate how much better off they will be once they have adapted to the ongoing risk. By taking some of the mystery out of flooding and flood risk, it aims to make it susceptible to the same business acumen that enables the UK’s SMEs to deal with the many other challenges they face. In this paper we will report on the different aspects of the research in the project Understanding behaviour Changing behaviour Modelling impacts Economic impacts Through the above the project will advise government, local authorities and other public bodies on how to improve their responses to floods and will enable them to recommend ways to improve the guidelines provided to SMEs in flood risk areas.
Resumo:
A abordagem de Modelos Baseados em Agentes é utilizada para trabalhar problemas complexos, em que se busca obter resultados partindo da análise e construção de componentes e das interações entre si. Os resultados observados a partir das simulações são agregados da combinação entre ações e interferências que ocorrem no nível microscópico do modelo. Conduzindo, desta forma, a uma simulação do micro para o macro. Os mercados financeiros são sistemas perfeitos para o uso destes modelos por preencherem a todos os seus requisitos. Este trabalho implementa um Modelo de Mercado Financeiro Baseado em Agentes constituído por diversos agentes que interagem entre si através de um Núcleo de Negociação que atua com dois ativos e conta com o auxílio de formadores de mercado para promover a liquidez dos mercados, conforme se verifica em mercados reais. Para operação deste modelo, foram desenvolvidos dois tipos de agentes que administram, simultaneamente, carteiras com os dois ativos. O primeiro tipo usa o modelo de Markowitz, enquanto o segundo usa técnicas de análise de spread entre ativos. Outra contribuição deste modelo é a análise sobre o uso de função objetivo sobre os retornos dos ativos, no lugar das análises sobre os preços.
Resumo:
Simulation is an effective method for improving supply chain performance. However, there is limited advice available to assist practitioners in selecting the most appropriate method for a given problem. Much of the advice that does exist relies on custom and practice rather than a rigorous conceptual or empirical analysis. An analysis of the different modelling techniques applied in the supply chain domain was conducted, and the three main approaches to simulation used were identified; these are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). This research has examined these approaches in two stages. Firstly, a first principles analysis was carried out in order to challenge the received wisdom about their strengths and weaknesses and a series of propositions were developed from this initial analysis. The second stage was to use the case study approach to test these propositions and to provide further empirical evidence to support their comparison. The contributions of this research are both in terms of knowledge and practice. In terms of knowledge, this research is the first holistic cross paradigm comparison of the three main approaches in the supply chain domain. Case studies have involved building ‘back to back’ models of the same supply chain problem using SD and a discrete approach (either DES or ABM). This has led to contributions concerning the limitations of applying SD to operational problem types. SD has also been found to have risks when applied to strategic and policy problems. Discrete methods have been found to have potential for exploring strategic problem types. It has been found that discrete simulation methods can model material and information feedback successfully. Further insights have been gained into the relationship between modelling purpose and modelling approach. In terms of practice, the findings have been summarised in the form of a framework linking modelling purpose, problem characteristics and simulation approach.
Resumo:
The supply chain can be a source of competitive advantage for the firm. Simulation is an effective tool for investigating supply chain problems. The three main simulation approaches in the supply chain context are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). A sample from the literature suggests that whilst SD and ABM have been used to address strategic and planning problems, DES has mainly been used on planning and operational problems., A review of received wisdom suggests that historically, driven by custom and practice, certain simulation techniques have been focused on certain problem types. A theoretical review of the techniques, however, suggests that the scope of their application should be much wider and that supply chain practitioners could benefit from applying them in this broader way.