986 resultados para active surveillance
Resumo:
Background Surveillance programs and research for acute respiratory infections in remote Australian communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting nasal swabs from a remote setting for bacterial polymerase chain reaction (PCR) testing. Methods We sampled every individual who presented to a remote community clinic over a three week period in August at a time of low influenza and no respiratory syncytial virus activity. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for six bacterial species was undertaken using real-time PCR. Results One hundred and forty participants were enrolled who contributed 150 study visits and paired specimens for testing. Respiratory illnesses accounted for 10% of the reasons for presentation. Bacteria were identified in 117 (78%) presentations for 110 (79.4%) individuals; Streptococcus pneumoniae and Haemophilus influenzae were the most common (each identified in 58% of episodes). The overall sensitivity for any bacterium detected in mailed specimens was 82.2% (95% CI 73.6, 88.1) compared to 94.8% (95% CI 89.4, 98.1) for frozen specimens. The sensitivity of the two methods varied by species identified. Conclusion The mailing of unfrozen nasal specimens from remote communities appears to influence the utility of the specimen for bacterial studies, with a loss in sensitivity for the detection of any species overall. Further studies are needed to confirm our finding and to investigate the possible mechanisms of effect. Clinical trial registration Australia and New Zealand Clinical Trials Registry Number: ACTRN12609001006235. Keywords: Respiratory bacteria; RT-PCR; Specimen transport; Laboratory methods
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
Distal radius fractures stabilized by open reduction internal fixation (ORIF) have become increasingly common. There is currently no consensus on the optimal time to commence range of motion (ROM) exercises post-ORIF. A retrospective cohort review was conducted over a five-year period to compare wrist and forearm range of motion outcomes and number of therapy sessions between patients who commenced active ROM exercises within the first seven days and from day eight onward following ORIF of distal radius fractures. One hundred and twenty-one patient cases were identified. Clinical data, active ROM at initial and discharge therapy assessments, fracture type, surgical approaches, and number of therapy sessions attended were recorded. One hundred and seven (88.4%) cases had complete datasets. The early active ROM group (n = 37) commenced ROM a mean (SD) of 4.27 (1.8) days post-ORIF. The comparator group (n = 70) commenced ROM exercises 24.3 (13.6) days post-ORIF. No significant differences were identified between groups in ROM at initial or discharge assessments, or therapy sessions attended. The results from this study indicate that patients who commenced active ROM exercises an average of 24 days after surgery achieved comparable ROM outcomes with similar number of therapy sessions to those who commenced ROM exercises within the first week.
Resumo:
This paper discusses the situation of welfare claimants, constructed as faulty citizens and flawed welfare subjects at the receiving end of complex and multi-layered, private and public, forms of monitoring and surveillance aimed at securing socially responsible, consuming and compliant behaviours. In Australia as in many other western countries, the rise of neoliberal economic regimes with their harsh and often repressive treatment of welfare claimants operates in tandem with a growing arsenal of CCTV and assorted urban governance measures (Monahan 2008, Maki 2011). The capacity for all forms of surveillance to intensify social inequalities through the lens of CCTV and other modes and methods of electronic monitoring is amply demonstrated in the surveillance studies literature, raising fundamental questions around issues of social justice, equity and the expenditure of societal resources (Norris and Armstrong 1999, Lyon 1994, 2001, Loader 1996).
Resumo:
Keeping exotic plant pests out of our country relies on good border control or quarantine. However with increasing globalization and mobilization some things slip through. Then the back up systems become important. This can include an expensive form of surveillance that purposively targets particular pests. A much wider net is provided by general surveillance, which is assimilated into everyday activities, like farmers checking the health of their crops. In fact farmers and even home gardeners have provided a front line warning system for some pests (eg European wasp) that could otherwise have wreaked havoc. Mathematics is used to model how surveillance works in various situations. Within this virtual world we can play with various surveillance and management strategies to "see" how they would work, or how to make them work better. One of our greatest challenges is estimating some of the input parameters : because the pest hasn't been here before, it's hard to predict how well it might behave: establishing, spreading, and what types of symptoms it might express. So we rely on experts to help us with this. This talk will look at the mathematical, psychological and logical challenges of helping experts to quantify what they think. We show how the subjective Bayesian approach is useful for capturing expert uncertainty, ultimately providing a more complete picture of what they think... And what they don't!
Resumo:
A method for prediction of the radiation pattern of N strongly coupled antennas with mismatched sources is presented. The method facilitates fast and accurate design of compact arrays. The prediction is based on the measured N-port S parameters of the coupled antennas and the N active element patterns measured in a 50 ω environment. By introducing equivalent power sources, the radiation pattern with excitation by sources with arbitrary impedances and various decoupling and matching networks (DMN) can be accurately predicted without the need for additional measurements. Two experiments were carried out for verification: pattern prediction for parasitic antennas with different loads and for antennas with DMN. The difference between measured and predicted patterns was within 1 to 2 dB.
Resumo:
OBJECTIVE: To compare patellar tendon sonographic findings in active, currently asymptomatic, elite athletes with those in nonathletic controls. DESIGN: Cross-sectional cohort study with convenience control sample. SETTING: The Victorian Institute of Sport Tendon Study Group, an institutional elite athlete study group in Australia. PATIENTS AND PARTICIPANTS: Two hundred elite male and female athletes from the sports of basketball, cricket, netball, and Australian rules football. Forty athletes who had current symptoms of jumper's knee were excluded from analysis, leaving 320 subject tendons in athletes who were currently asymptomatic. Twenty-seven nonathletic individuals served as controls. MAIN OUTCOME MEASURE: Sonographic patellar tendon appearance. We measured the dimensions of subject tendons and noted the presence or absence of hypoechoic regions and tendon calcification. Dimensions of hypoechoic regions were measured, and approximate cross-sectional areas were calculated. Chi-squared analysis was used to test the prevalence of hypoechoic regions in subjects and controls and men and women. RESULTS: In currently asymptomatic subjects, hypoechoic regions were more prevalent in athlete tendons (22%) than in controls (4%), in male subject tendons (30%) than in female subjects (14%), and in basketball players (32%) than in other athletes (9%) (all p < 0.01). Bilateral tendon abnormalities were equally prevalent in men and women but more prevalent in basketball players (15%) than in other athletes (3%) (p < 0.05). Sonographic hypoechoic regions were present in 35 of 250 (14%) patellar tendons in athletes who had never had anterior knee pain. CONCLUSIONS: Patellar tendon sonographic hypoechoic areas were present in asymptomatic patellar tendons of a proportion of elite athletes but rarely present in controls. This has implications for clinicians managing athletes with anterior knee pain.
Resumo:
Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.
Resumo:
Population ageing is one of the major challenges of the 21st century and societies need to optimize opportunities for active ageing. This thesis explored how the built environment impacts the mobility and participation within the community. A combination of person-based GPS tracking and in-depth interviews was used to collect data on transportation use and engagement in activities of older people living within Brisbane. It showed that the built environment has a strong impact on mobility. To enable healthy and active ageing modern communities need to overcome car dependency and provide mobility options that are tailored towards older people’s needs.
Resumo:
The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region.
Resumo:
Metastable, active, or nonequilibrium states due to the presence of abnormal structures and various types of defects are well known in metallurgy. The role of such states at gold surfaces in neutral aqueous media (an important electrode system in the microsensor area) was explored using cyclic voltammetry. It was demonstrated that, as postulated in earlier work from this laboratory, there is a close relationship between premonolayer oxidation, multilayer hydrous oxide reduction and electrocatalytic behaviour in the case of this and other metal electrode systems. Some of the most active, and therefore most important, entities at surfaces (e.g., metal adatoms) are not readily imageable or detectable by high resolution surface microscopy techniques. Cyclic voltammetry, however, provides significant, though not highly specific, information about such species. The main conclusion is that further practical and theoretical work on active states of metal surfaces is highly desirable as their behaviour is not simple and is of major importance in many electrocatalytic processes.
Resumo:
The formation of macroporous honeycomb gold using an electrochemically generated hydrogen bubble template is described. The synthesis procedure induces the formation of highly active surfaces with enhanced electrocatalytic and surface enhanced Raman scattering properties.
Resumo:
Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces.