381 resultados para acetaldehyde derivatization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and rapid method was developed for determination of 8 carbamate insecticides and 10 of their metabolites in apples, pears, and lettuce by liquid chromatography with UV diode array detector. With this method no derivatization is needed. Carbamates not belonging to the N-methylcarbamate class and metabolites without the N-methyl group can also be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes a novel approach for the analysis of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) and acetone in environmental samples using micellar electrokinetic chromatography (MEKC). The method is based on the reaction of carbonyl compounds with 3-methyl-2-benzothiazoline hydrazone (MBTH) that gives an azine intermediate with maximum absorbance at 216 nm. A systematic evaluation of sample dissolution medium was conducted as a means to enhancing sensitivity. In the best condition, samples were dissolved in 0.030 mol.L-1 tetraborate solution. This condition presented enhancement factors in the range of 35-54 for the aldehydes under investigation, computed as the improvement of the concentration limits of detection (LODs) with reference to the sample dissolved in pure water. The running buffer was 0.020 mol.L-1 tetraborate, pH 9.3, containing 0.050 mol-L-1 sodium dodecyly sulfate (SIDS). The overall methodology presented several advantages over established methods for aldehydes. Worthy mentioning that MBTH is available in high purity degree, dispensing laborious reagent purification procedures. A few method validation parameters were determined revealing good migration time repeatability (< 2.5% coefficient of variation, CV) and area repeatability (< 4% CV), excellent linearity (20-120 mug/L, r > 0.995) and adequate sensitivity for environmental applications. The LODs with respect to each single aldehyde were in the range of 0.54-4.0 mug.L-1 and 11 mug.L-1 for acetone. The methodology was applied to the determination of aldehydes indoors. Samples were collected in an impinger flask containing 0.05% MBTH solution, at a flow rate of 0.80 L.min(-1), during 2.5 h, at different times during the day. The most abundant carbonyls in the samples were acetone, followed by formaldehyde and acetaldehyde, with estimate peak concentrations of 452, 5.2 and 2.2 ppbv, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sterol biomarkers serve as an alternative method for detecting sewage pollution. Sterols were extracted from samples of surface sediment collected in Cubato (the Vila dos Pescadores and Vila Esperan double dagger a communities) and quantified using GC-MS after Soxhlet extraction, cleanup, and derivatization. Fecal contamination was evaluated based on the concentration of coprostanol and the ratio of the selected sterols. The most abundant sterol was cholestanol, followed by coprostanol. The concentrations of coprostanol in surface sediments ranged from a minimum of 4.21 mu g g(-1) dry sediment (Vila dos Pescadores station) to a maximum of 8.32 mu g g(-1) dry sediment (Vila Esperan double dagger a station). A coprostanol concentration of about 10 mu g g(-1) was found, indicating areas of high sewage contamination. Coprostanol levels at sewage stations were higher than in other Brazilian coastal areas, which may be attributed to the fraction of the population without sanitation services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of Aristolochia brasiliensis and A. esperanzae afforded 12 clerodane derivatives, including the following six novel ones: rel (5S, 8R, 9S, 10R)-2-oxo-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-2-oxo-ent-clerod-3,13-dien-15-oic acid methyl ester, (5R, 8R, 9S, 10R)-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-ent-clerod-3,13-dien-15-oic acid, (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-3-cleroden-15-oic acid methyl ester and (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-clerod-3,13-dien-15-oic acid methyl ester. The structures were assigned on the basis of spectral data and derivatization by chemical reactions. The occurrence of this type of diterpene has not previously been reported in Aristolochiaceae. © 1987.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alcoholic liver cirrhosis usually causes overall immunological changes which might be attributed to either the hepatic disease itself, to ethanol action and/or to malnourishment of the patient. These immune abnormalities comprise both cellular and humoral immunity, consisting of increased immunoglobulin levels, depressed late-skin response to antigens, lowered proliferative response of lymphocytes to mitogens, lower plasma levels of complement proteins (C3 and C4) and by either lower (IL2 and gamma IF) or increased (IL1, TNF, IL6 and IL8) cytokine levels. Parallel to the systemic immune suppression found in most patients, there is also a concomitant local, genetically based, immune stimulation at the liver level which leads to hepatic self-aggression. The systemic immune-suppression could be responsible for periodical infections or neoplasia found in these patients. The possible factors for the immune exhaustion are: a) lower hepatic clearance of toxins and/or bacteria; b) lower hepatic synthesis of complement components; c) cytokines (IL2 and gamma IF) deficiencies, and d) deficiencies of nutrients related to the antioxidant and/or immune defense mechanisms. The immune stimulation of the liver self aggression is characterized by the preferential migration of cytotoxic T cell and neutrophils to the liver, following stimulatory factors such as Mallory bodies, acetaldehyde and/or antibodies. Moreover, the local increase of cytokines (IL1, TNF, IL6 and IL8) levels would be liable for the local phagocyte chemotaxy (IL8) or part of liver injury (TNF) eased by the lower antioxidant defense of the cirrhotic liver.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and rapid method for the determination of methiocarb in artichokes by high-performance liquid chromatography with UV detection is described. No derivatization is needed and the limit of determination (0.01 ppm) is analogous to that of fluorometric detection. The results of trials carried out with granular and liquid formulations of this active ingredient are also reported. Immediately after treatment with the liquid formulation methiocarb residues averaged 1.47 ppm, while after treatment with the granular formulation residues were considered fortuitous. The decay rate of methiocarb residues in artichokes shows that the decrease and eventual disappearance of this active ingredient can chiefly be ascribed to the dilution effect due to head growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, an in situ derivatization and extraction method for the determination of pentachlorophenol (PCP) has been applied successfully in the analysis of water samples. The PCP derivative analysis was performed by gas-liquid chromatography with electron capture detection. The limit of detection of the method is 1 μg/L and recoveries averaged 78-108% for PCP acetate at levels of 2, 10 and 20 μg/L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid and economical method is described for the determination of deltamethrin in wheat, rice, peanuts and corn. It is based on simultaneous extraction and clean-up on a column packed with alumina and silica gel using n-hexane-ethyl ether (8:2, v/v), followed by a derivatization step and gas-chromatographic analysis. Recoveries from fortified cereal and peanut samples were determined at four concentration levels and ranged from 73 to 109%. The detection limits were 0.01 to 0.03 mg/ kg. This method simplifies the traditional procedures in terms of sample size, solvent consumption and analysis time. © Springer-Verlag 1998.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alternative method using liquid chromatography with UV detection for the determination of prochloraz as 2,4,6-trichlorophenol in mango, papaya and orange is described. Ethyl acetate, acetone and dichloromethane were tested for extraction of prochloraz from the fruits. After extraction the residue of prochloraz was derivatized with pyridine hydrochloride. The analysis was carried out using liquid chromatography with UV detection and gas chromatography with electron-capture detection. Average recoveries of prochloraz from spiked fruits (0.1 and 0.2 mg kg-1) ranged from 80% to 94% with relative standard deviations between 5.6% and 12.6% (n=8). Detection and quantification limits were 0.05 and 0.1 mg kg-1, respectively. The LC-UV method was applied to mango and papaya samples submitted to dip treatment with a prochloraz formulation under laboratory conditions. In addition, fruit samples obtained from local markets were analysed. ©2005 Sociedade Brasileira de Química.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods were developed for the analysis of acetonitrile and its metabolite cyanide in the blood of rats exposed to acetonitrile. Acetonitrile was analyzed by the headspace technique coupled to gas chromatography with detection by flame ionization, and cyanide was analyzed by high-performance liquid chromatography with fluorescence detection (λ ex = 418 nm and λ em = 460 nm) after derivatization of the ion with naphthalene 2,3-dicarboxyaldehyde and taurine. The quantitation limits of the methods for the analysis of acetonitrile and cyanide were 4.875 μg/mL and 0.025 μg/mL, respectively. The coefficients of variation of 10% or less obtained for intra- and interassay precision indicate the precision of these analytical methods and the systematic errors, all less than 5%, indicate that the methods are quite accurate. The methods were applied to an experimental study after the animals received acetonitrile at the doses of 2 mmol/kg or 5 mmol/kg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical investigation of the cytotoxic and anti-tuberculosis active butanone extract obtained from the growth media of the marine-derived fungus Beauveria felina led to the isolation of two new destruxins, [β-MePro] destruxin E chlorohydrin (1) and pseudodestruxin C (3), along with five known cyclic depsipeptides. The structures of the new destruxin derivatives were established by analysis of spectroscopic data, while the absolute configuration of the common amino acid residues was established by Marfey's analysis. The absolute configuration of the 2(A),4(5)-5-chloro-2,4-dihydroxypentanoic acid residue in 1 could be established by application of a J-based configuration method followed by derivatization with R-MPA-Cl and NMR analysis. © Japan Antibiotics Research Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of intracellular glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) in baker's yeast was investigated in submerged culture supplied with glucose or glycerol as sole carbon sources. Inhibitors of the glycolytic pathway, Krebs cycle and respiratory chain did not stimulate glycerol-3-phosphate dehydrogenase synthesis when added in low concentrations in up 7.5 × 10 -5 mol/L. The repression exercised by glucose on the synthesis of glycerol-3-phosphate dehydrogenase in YP-glucose medium was reduced by the addition of fermentation products and of sodium bisulfite. Synthesis of the enzyme was raised 22-110%. However, in YP-glycerol medium, the addition of 0.06% (w/v) sodium bisulfite reduced (29%) the synthesis of the enzyme, while 0.012% (v/v) acetaldehyde stimulated the synthesis of glycerol-3-phosphate dehydrogenase by 12%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.