992 resultados para aboveground biomass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims at seeking the universal behavior of propagation rate variation with air superficial velocity (V-s) in a packed bed of a range of biomass particles in reverse downdraft mode while also resolving the differing and conflicting explanations in the literature. Toward this, measurements are made of exit gas composition, gas phase and condensed phase surface temperature (T-g and T-s), and reaction zone thickness for a number of biomass with a range of properties. Based on these data, two regimes are identified: gasificationvolatile oxidation accompanied by char reduction reactions up to 16 +/- 1cm/s of V-s and above this, and char oxidationsimultaneous char oxidation and gas phase combustion. In the gasification regime, the measured T-s is less than T-g; a surface heat balance incorporating a diffusion controlled model for flaming combustion gives and matches with the experimental results to within 5%. In the char oxidation regime, T-g and T-s are nearly equal and match with the equilibrium temperature at that equivalence ratio. Drawing from a recent study of the authors, the ash layer over the oxidizing char particle is shown to play a critical role in regulating the radiation heat transfer to fresh biomass in this regime and is shown to be crucial in explaining the observed propagation behavior. A simple model based on radiation-convection balance that tracks the temperature-time evolution of a fresh biomass particle is shown to support the universal behavior of the experimental data on reaction front propagation rate from earlier literature and the present work for biomass with ash content up to 10% and moisture fraction up to 10%. Upstream radiant heat transfer from the ash-laden hot char modulated by the air flow is shown to be the dominant feature of this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years new emphasis has been placed on problems of the environmental aspects of waste disposal, especially investigating alternatives to landfill, sea dumping and incineration. There is also a strong emphasis on clean, economic and efficient processes for electric power generation. These two topics may at first appear unrelated. Nevertheless, the technological advances are now such that a solution to both can be combined in a novel approach to power generation based on waste-derived fuels, including refuse-derived fuel (RDF) and sludge power (SP) by utilising a slagging gasifier and advance fuel technology (AFT). The most appropriate gasification technique for such waste utilisation is the British Gas/Lurgi (BGL) high pressure, fixed bed slagging gasifier where operation on a range of feedstocks has been well-documented. This gasifier is particularly amenable to briquette fuel feeding and, operating in an integrated gasification combined cycle mode (IGCC), is particularly advantageous. Here, the author details how this technology has been applied to Britain's first AFT-IGCC Power Station which is now under development at Fife Energy Ltd., in Scotland, the former British Gas Westfield Development Centre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of fuel other than woody generally has been limited to rice husk and other residues are rarely tried as a fuel in a gasification system. With the availability of woody biomass in most countries like India, alternates fuels are being explored for sustainable supply of fuel. Use of agro residues has been explored after briquetting. There are few feedstock's like coconut fronts, maize cobs, etc, that might require lesser preprocessing steps compared to briquetting. The paper presents a detailed investigation into using coconut fronds as a fuel in an open top down draft gasification system. The fuel has ash content of 7% and was dried to moisture levels of 12 %. The average bulk density was found to be 230 kg/m3 with a fuel size particle of an average size 40 mm as compared to 350 kg/m3 for a standard wood pieces. A typical dry coconut fronds weighs about 2.5kgs and on an average 6 m long and 90 % of the frond is the petiole which is generally used as a fuel. The focus was also to compare the overall process with respect to operating with a typical woody biomass like subabul whose ash content is 1 %. The open top gasification system consists of a reactor, cooling and cleaning system along with water treatment. The performance parameters studied were the gas composition, tar and particulates in the clean gas, water quality and reactor pressure drop apart from other standard data collection of fuel flow rate, etc. The average gas composition was found to be CO 15 1.0 % H-2 16 +/- 1% CH4 0.5 +/- 0.1 % CO2 12.0 +/- 1.0 % and rest N2 compared to CO 19 +/- 1.0 % H-2 17 +/- 1.0 %, CH4 1 +/- 0.2 %, CO2 12 +/- 1.0 % and rest N2. The tar and particulate content in the clean gas has been found to be about 10 and 12 mg/m3 in both cases. The presence of high ash content material increased the pressure drop with coconut frond compared to woody biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food industries like biscuit and confectionary use significant amount of fossil fuel for thermal energy. Biscuit manufacturing in India is carried out both by organized and unorganized sector. The ratio of organized to unorganized sector is 60 : 40 (1). The total biscuit manufacturing in the organized sector India in 2008 was about 1.7 million metric tons (1). Accounting for the unorganized sector in India, the total biscuit manufacturing would have been about 2.9 million metric tons/annum. A typical biscuit baking is carried in a long tunnel kiln with varying temperature in different zones. Generally diesel is used to provide the necessary heat energy for the baking purpose, with temperature ranging from 190 C in the drying zone to about 300 C in the baking area and has to maintain in the temperature range of +/- 5 C. Typical oil consumption is about 40 litres per ton of biscuit production. The paper discusses the experience in substituting about 120 lts per hour kiln for manufacturing about 70 tons of biscuit daily. The system configuration consists of a 500 kg/hr gasification system comprising of a reactor, multicyclone, water scrubbers, and two blowers for maintaining the constant gas pressure in the header before the burners. Cold producer gas is piped to the oven located about 200 meters away from the gasifier. Fuel used in the gasification system is coconut shells. All the control system existing on the diesel burner has been suitably adapted for producer gas operation to maintain the total flow, A/F control so as to maintain the temperature. A total of 7 burners are used in different zones. Over 17000 hour of operation has resulted in replacing over 1800 tons of diesel over the last 30 months. The system operates for over 6 days a week with average operational hours of 160. It has been found that on an average 3.5 kg of biomass has replaced one liter of diesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study follows an approach to estimate phytomass using recent techniques of remote sensing and digital photogrammetry. It involved tree inventory of forest plantations in Bhakra forest range of Nainital district. Panchromatic stereo dataset of Cartosat-1 was evaluated for mean stand height retrieval. Texture analysis and tree-tops detection analyses were done on Quick-Bird PAN data. The composite texture image of mean, variance and contrast with a 5x5 pixel window was found best to separate tree crowns for assessment of crown areas. Tree tops count obtained by local maxima filtering was found to be 83.4 % efficient with an RMSE+/-13 for 35 sample plots. The predicted phytomass ranged from 27.01 to 35.08 t/ha in the case of Eucalyptus sp. while in the case of Tectona grandis from 26.52 to 156 t/ha. The correlation between observed and predicted phytomass in Eucalyptus sp. was 0.468 with an RMSE of 5.12. However, the phytomass predicted in Tectona grandis was fairly strong with R-2=0.65 and RMSE of 9.89 as there was no undergrowth and the crowns were clearly visible. Results of the study show the potential of Cartosat-1 derived DSM and Quick-Bird texture image for the estimation of stand height, stem diameter, tree count and phytomass of important timber species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the scope and responsibilities of design? This work partially answers this by employing a normative approach to design of a biomass cook stove. This study debates on the sufficiency of existing design methodologies in the light of a capability approach. A case study of a biomass cook stove Astra Ole has elaborated the theoretical constructs of capability approach, which, in turn, has structured insights from field to evaluate the product. Capability approach based methodology is also prescriptively used to design the mould for rapid dissemination of the Astra Ole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As one of the most abundant polysaccharides on Earth, xylan will provide more than a third of the sugars for lignocellulosic biofuel production when using grass or hardwood feedstocks. Xylan is characterized by a linear β(1,4)-linked backbone of xylosyl residues substituted by glucuronic acid, 4-O-methylglucuronic acid or arabinose, depending on plant species and cell types. The biological role of these decorations is unclear, but they have a major influence on the properties of the polysaccharide. Despite the recent isolation of several mutants with reduced backbone, the mechanisms of xylan synthesis and substitution are unclear. We identified two Golgi-localized putative glycosyltransferases, GlucUronic acid substitution of Xylan (GUX)-1 and GUX2 that are required for the addition of both glucuronic acid and 4-O-methylglucuronic acid branches to xylan in Arabidopsis stem cell walls. The gux1 gux2 double mutants show loss of xylan glucuronyltransferase activity and lack almost all detectable xylan substitution. Unexpectedly, they show no change in xylan backbone quantity, indicating that backbone synthesis and substitution can be uncoupled. Although the stems are weakened, the xylem vessels are not collapsed, and the plants grow to normal size. The xylan in these plants shows improved extractability from the cell wall, is composed of a single monosaccharide, and requires fewer enzymes for complete hydrolysis. These findings have implications for our understanding of the synthesis and function of xylan in plants. The results also demonstrate the potential for manipulating and simplifying the structure of xylan to improve the properties of lignocellulose for bioenergy and other uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four southern Minnesota populations of curlyleaf pondweed ( Potamogeton crispus L.) were sampled monthly from January 2001 to November 2002 to determine seasonal phenological, biomass, and carbohydrate allocation patterns. Low periods of carbohydrate storage in the seasonal phenological cycle indicate potentially vulnerable periods in the plant’s life cycle and may be the ideal time to initiate management and control efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hundred and thirty-eight Melaleuca quinquenervia (Cav.) S. T. Blake (broad-leaved paperbark) trees were harvested from six sites in South Florida to formulate regression equations for estimating tree above-ground dry weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.