998 resultados para ZINC LOAD
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.
Resumo:
An Auger study of the oxidation of zinc has been carried out to confirm that the relative intensities of the metal lines in election-beam induced Auger spectra are directly proportional to the number of valence electrons and therefore of direct use in investigating surface oxidation of metals.
Resumo:
The problem of an infinite transversely isotropic circular cylindrical shell subjected to an axisymmetric radial external line load is investigated using elasticity theory, classical shell theory and shear deformation theory. The results obtained by these methods are compared for two ratios of inner to outer shell radius and for varying degrees of anisotropy. Some typical results are given here to show the effect of anisotropy and the thickness of the shell on the distribution of stresses and displacements.
Resumo:
A two-level control scheme for the load frequency control of a multi-area power system utilizing certain possible beneficial aspects of interconnections is described in this paper. The problem is identified as the determination of the necessary equivalent perturbation on the control distribution matrix to provide the corrective control.
Resumo:
Oxidation of zinc sulphide pellets is carried out in the ranges of 600-826°C temperature, 0.3-0.5 porosity and 15-50 minutes of reaction time. An experimental technique is employed to simultaneously determine the rate of weight loss of the solid and conversions of the solid reactant at various levels in the pellet for different reaction times. A structural model is used to explain the experimental results. It is found that the model predicts both the experimental results obtained under various conditions reasonably well.
Resumo:
An elasticity solution has been obtained for a long circular sandwich cylindrical shell subjected to axisymmetric radial ring load using Love's stress function approach. Numerical results are presented for different ratios of modulus of elasticity of the layers. The results obtained from this analysis have been compared with those obtained from sandwich shell theory due to Fulton.
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments.
Resumo:
To strive to improve the rehabilitation program of individuals with transfemoral amputation fitted with bone-anchored prosthesis based on data from direct measurements of the load applied on the residuum we first of all need to understand the load applied on the fixation. Therefore the load applied on the residuum was first directly measured during standardized activities of daily living such as straight line level walking, ascending and descending stairs and a ramp and walking around a circle. From measuring the load in standardized activities of daily living the load was also measured during different phases of the rehabilitation program such as during walking with walking aids and during load bearing exercises.[1-15] The rehabilitation program for individuals with a transfemoral amputation fitted with an OPRA implant relies on a combination of dynamic and static load bearing exercises.[16-20] This presentation will focus on the study of a set of experimental static load bearing exercises. [1] A group of eleven individuals with unilateral transfemoral amputation fitted with an OPRA implant participated in this study. The load on the implant during the static load bearing exercises was measured using a portable system including a commercial transducer embedded in a short pylon, a laptop and a customized software package. This apparatus was previously shown effective in a proof-of-concept study published by Prof. Frossard. [1-9] The analysis of the static load bearing exercises included an analysis of the reliability as well as the loading compliance. The analysis of the loading reliability showed a high reliability between the loading sessions indicating a correct repetition of the LBE by the participants. [1, 5] The analysis of the loading compliance showed a significant lack of axial compliance leading to a systematic underloading of the long axis of the implant during the proposed experimental static LBE.
Resumo:
Much work has been done on obtaining empirical stress-velocity relations and evaluating the temperature dependence and activation energy of plastic deformation /1, 2/. Another prevalent concept is that of the drag coefficient and its variation with degree of crystal imperfection /3/. Significant differences and discrepancies exist in the reported values /2, 4/. Although it is recognised that the yield point is caused by point interstitials and aggregates, little has been done on the evaluation of specific crystal-solute combinations and interaction parameters. Some of the first efforts, in this direction were performed by Wain and Cottrell /5/.
Resumo:
Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.
Resumo:
Online dynamic load modeling has become possible with the availability of Static Voltage Compensator (SVC) and Phasor Measurement Unit (PMU) devices. The power of the load response to the small random bounded voltage fluctuations caused from SVC can be measured by PMU for modelling purposes. The aim of this paper is to illustrate the capability of identifying an aggregated load model from high voltage substation level in the online environment. The induction motor is used as the main test subject since it contributes the majority of the dynamic loads. A test system representing simple electromechanical generator model serving dynamic loads through the transmission network is used to verify the proposed method. Also, dynamic load with multiple induction motors are modeled to achieve a better realistic load representation.
Critical Evaluation of Determining Swelling Pressure by Swell-Load Method and Constant Volume Method
Resumo:
For any construction activity in expansive soils, determination of swelling pressure/heave is an essential step. Though many attempts have been made to develop laboratory procedures by using the laboratory one-dimensional oedometer to determine swelling pressure of expansive soils, they are reported to yield varying results. The main reason for these variations could be heterogeneous moisture distribution of the sample over its thickness. To overcome this variation the experimental procedure should be such that the soil gets fully saturated. Attempts were made to introduce vertical sand drains in addition to the top and bottom drains. In this study five and nine vertical sand drains were introduced to experimentally find out the variations in the swell and swelling pressure. The variations in the moisture content at middle, top, and bottom of the sample in the oedometer test are also reported. It is found that swell-load method is better as compared to zero-swell method. Further, five number of vertical sand drains are found to be sufficient to obtain uniform moisture content distribution.
Resumo:
The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References