393 resultados para ZEBRAFISH DANIO-RERIO


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported by Royal Society of London (University Research Fellowship), Medical Research Council (New Investigator Research Grant) and CNRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Organophosphate (OP) pesticides are well-known developmental neurotoxicants that have been linked to abnormal cognitive and behavioral endpoints through both epidemiological studies and animal models of behavioral teratology, and are implicated in the dysfunction of multiple neurotransmitters, including dopamine. Chemical similarities between OP pesticides and organophosphate flame retardants (OPFRs), a class of compounds growing in use and environmental relevance, have produced concern regarding whether developmental exposures to OPFRs and OP pesticides may share behavioral outcomes, impacts on dopaminergic systems, or both. Methods: Using the zebrafish animal model, we exposed developing fish to two OPFRs, TDCIPP and TPHP, as well as the OP pesticide chlorpyrifos, during the first 5 days following fertilization. From there, the exposed fish were assayed for behavioral abnormalities and effects on monoamine neurochemistry as both larvae and adults. An experiment conducted in parallel examined how antagonism of the dopamine system during an identical window of development could alter later life behavior in the same assays. Finally, we investigated the interaction between developmental exposure to an OPFR and acute dopamine antagonism in larval behavior. Results: Developmental exposure to all three OP compounds altered zebrafish behavior, with effects persisting into adulthood. Additionally, exposure to an OPFR decreased the behavioral response to acute D2 receptor antagonism in larvae. However, the pattern of behavioral effects diverged substantially from those seen following developmental dopamine antagonism, and the investigations into dopamine neurochemistry were too variable to be conclusive. Thus, although the results support the hypothesis that OPFRs, as with OP pesticides such as chlorpyrifos, may present a risk to normal behavioral development, we were unable to directly link these effects to any dopaminergic dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental problem in biology is understanding how and why things group together. Collective behavior is observed on all organismic levels - from cells and slime molds, to swarms of insects, flocks of birds, and schooling fish, and in mammals, including humans. The long-term goal of this research is to understand the functions and mechanisms underlying collective behavior in groups. This dissertation focuses on shoaling (aggregating) fish. Shoaling behaviors in fish confer foraging and anti-predator benefits through social cues from other individuals in the group. However, it is not fully understood what information individuals receive from one another or how this information is propagated throughout a group. It is also not fully understood how the environmental conditions and perturbations affect group behaviors. The specific research objective of this dissertation is to gain a better understanding of how certain social and environmental factors affect group behaviors in fish. I focus on two ecologically relevant decision-making behaviors: (i) rheotaxis, or orientation with respect to a flow, and (ii) startle response, a rapid response to a perceived threat. By integrating behavioral and engineering paradigms, I detail specifics of behavior in giant danio Devario aequipinnatus (McClelland 1893), and numerically analyze mathematical models that may be extended to group behavior for fish in general, and potentially other groups of animals as well. These models that predict behavior data, as well as generate additional, testable hypotheses. One of the primary goals of neuroethology is to study an organism's behavior in the context of evolution and ecology. Here, I focus on studying ecologically relevant behaviors in giant danio in order to better understand collective behavior in fish. The experiments in this dissertation provide contributions to fish ecology, collective behavior, and biologically-inspired robotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No plantio do arroz parte de um corpo d’água (rio, lago, lagoa) é desviado para a irrigação da plantação, e, posteriormente, a água utilizada nas lavouras é devolvida ao rio/lago/lagoa de origem. Assim, seja por lixiviação ou por qualquer outro fator, a água entra em contato com os agrotóxicos que, anteriormente, foram utilizados na plantação, podendo causar danos à qualidade do recurso hídrico e à fauna lacustre, devido à exposição a estes poluentes. O presente trabalho teve por objetivo verificar a citotoxicidade de agrotóxicos (herbicida e inseticida), utilizados na rizicultura no estado do Rio Grande do Sul, em células hepáticas da linhagem ZF-L. A partir da análise de funcionalidade de três alvos celulares diferentes, integridade da membrana celular, estabilidade lisossomal e atividade mitocondrial frente à exposição ao Roundup Transorb® , ao Furadan 350 SC® e à associação destes produtos. Foi analisada ainda, a capacidade de defesa das células, expostas aos poluentes escolhidos, no que diz respeito à atividade de proteínas extrusoras de xenobióticos, assim como à expressão de tais proteínas. A partir dos resultados obtidos foi verificado efeito citotóxico de ambos os agrotóxicos, bem como a mistura destes para todos os alvos verificados, apresentando ainda efeito inibitório à atividade de extrusão de xenobióticos pelas glicoproteínas P (P-gps). Apenas quando expostas ao inseticida e à mistura as células apresentaram um aumento na expressão de glicoproteínas (P-gp). Verificou-se a existência de correlação negativa entre a citotoxicidade apresentada, principalmente na atividade mitocondrial e na integridade lisossomo e a atividade das P-gps. Em conclusão, percebeu-se que as concentrações abaixo do permitido pela legislação brasileira, para os princípios ativos dos agrotóxicos testados, mostraram-se tóxicas para todos os alvos de citotoxicidade testados neste estudo, com exceção da mitocôndria, sugerindo que esta toxicidade apresentada pode ser devido aos surfactantes presentes nas formulações comerciais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age is the highest risk factor for some of the most prevalent human diseases, including cancer. Telomere shortening is thought to play a central role in the aging process in humans. The link between telomeres and aging is highlighted by the fact that genetic diseases causing telomerase deficiency are associated with premature aging and increased risk of cancer. For the last two decades, this link has been mostly investigated using mice that have long telomeres. However, zebrafish has recently emerged as a powerful and complementary model system to study telomere biology. Zebrafish possess human-like short telomeres that progressively decline with age, reaching lengths in old age that are observed when telomerase is mutated. The extensive characterization of its well-conserved molecular and cellular physiology makes this vertebrate an excellent model to unravel the underlying relationship between telomere shortening, tissue regeneration, aging and disease. In this Review, we explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two ‘short’ (α1, α2) and one ‘long’ chain (theoretically any one of α3–6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The teleost fish nonapeptides, arginine vasotocin (AVT) and isotocin (IT), have been implicated in the regulation of social behavior. These peptides are expected to be involved in acute and transient changes in social context, in order to be efficient in modulating the expression of social behavior according to changes in the social environment. Here we tested the hypothesis that short-term social interactions are related to changes in the level of both nonapeptides across different brain regions. For this purpose we exposed male zebrafish to two types of social interactions: (1) real opponent interactions, from which a Winner and a Loser emerged; and (2) mirror-elicited interactions, that produced individuals that did not experience a change in social status despite expressing similar levels of aggressive behavior to those of participants in real-opponent fights. Non-interacting individuals were used as a reference group. Each social phenotype (i.e. Winners, Losers, Mirror-fighters) presented a specific brain profile of nonapeptides when compared to the reference group. Moreover, the comparison between the different social phenotypes allowed to address the specific aspects of the interaction (e.g. assessment of opponent aggressive behavior vs. self-assessment of expressed aggressive behavior) that are linked with neuropeptide responses. Overall, agonistic interactions seem to be more associated with the changes in brain AVT than IT, which highlights the preferential role of AVT in the regulation of aggressive behavior already described for other species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group living animals may eavesdrop on signalling interactions between conspecifics and integrate it with their own past social experience in order to optimize the use of relevant information from others. However, little is known about this interplay between public (eavesdropped) and private social information. To investigate it, we first manipulated the dominance status of bystander zebrafish. Next, we either allowed or prevented bystanders from observing a fight. Finally, we assessed their behaviour towards the winners and losers of the interaction, using a custom-made video-tracking system and directional analysis. We found that only dominant bystanders who had seen the fight revealed a significant increase in directional focus (a measure of attention) towards the losers of the fights. Furthermore, our results indicate that information about the fighters' acquired status was collected from the signalling interaction itself and not from post-interaction status cues, which implies the existence of individual recognition in zebrafish. Thus, we show for the first time that zebrafish, a highly social model organism, eavesdrop on conspecific agonistic interactions and that this process is modulated by the eavesdroppers' dominance status. We suggest that this type of integration of public and private information may be ubiquitous in social learning processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Comportamental apresentada ao ISPA - Instituto Universitário

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio) were investigated in a semi-static bioassay. The pesticide mean concentration in water was 03ug litre(-1) and the level of endosulfan residues (x(alfa)+B(beta)-isomers+endosulfan sulfate) in the exposed fish at day 21 was 0.81 (+-0.12)ug g(-1) body weight. The estimated value of the bioconcentration factor (BCF) was 2650 (+-441), the total endosulfan residues being eliminated with a biological half-life of four days. Histopathological studies showed predominantly lipid accumulation in the liver and necrotic focus in the gills of exposed fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.